Economics 204
Lecture 8—Wednesday, August 5, 2009

Chapter 3, Linear Algebra Section 3.1, Bases

Definition 1 Let X be a vector space over a field F'. A linear combination of x1, ..., x, is a vector of the
form

n
Yy = Z&ixi where aq,...,a, € F
i=1

«; is the coefficient of x; in the linear combination. If V' C X, spanV denotes the set of all linear
combinations of V.

A set V C X is linearly dependent if there exist vy, ...,v, € X and aq,...,a, € F not all zero such that

n
Z ;0; = 0
i=1

A set V C X is linearly independent if it is not linearly dependent.
A set V C X spans X if spanV = X.
A Hamel basis (often just called a basis) of a vector space X is a linearly independent set of vectors in X

that spans X.

Example: {(1,0),(0,1)} is a basis for R2.

{(1,1),(—1,1)} is another basis for R*:

(x,y) = «a(1,1)+ 5(-1,1)

r = a—p

y = a+p
r+y = 2«

0 — r+y
2



y—z = 20

_ y-7
b=
@y = S2a -+

Since (z,y) is an arbitrary element of R?, {(1,1),(—1,1)} spans R?. If (z,y) = (0,0),

0+0 0-0
o= —=
2 2

so the coefficients are all zero, so {(1,1),(—1,1)} is linearly independent. Since it is linearly independent
and spans R?, it is a basis.
Example: {(1,0,0),(0,1,0)} is not a basis of R?, because it does not span.

Example: {(1,0),(0,1),(1,1)} is not a basis for R
so the set is not linearly independent.

Theorem 2 (1.2°, see Corrections handout) Let V' be a Hamel basis for X. Then every vector x € X
has a unique representation as a linear combination (with all coefficients nonzero) of a finite number of

elements of V.

(Aside: the unique representation of 0 is 0 = "¢ ib;.)

Proof: Let x € X. Since V spans X, we can write

T = Z QgUs

SES

where S; is finite, as, € F', as # 0, vs € V for s € S;. Now, suppose

T = Z AsVs = Z sts

SES SESy



where Sy is finite, 35 € F, s # 0, and vs € V for s € S5.

Let S = S7 U .S,, and define

as =0 for se€ 5\ 5

BSZO for SESl\SQ

Then

0 = z—x
= Z QsVs — Z sts
SES SESy
= Z AsVs — Z sts
seS seS
= Z(Oés - Bs)vs
seS

Since V' is linearly independent, we must have a, — 35 = 0, so ay = 3, for all s € S.

seEST e a; #0055 s€ 5,

so S1 =5 and oz = (B, for s € 51 = Sy, so the representation is unique.m

Theorem 3 FEwvery vector space has a Hamel basis.

Proof: The proof uses the Axiom of Choice. Indeed, the theorem is equivalent to the Axiom of Choice. m

Theorem 4 Any two Hamel bases of a vector space X are numerically equivalent.

Proof: The proof depends on the so-called Exchange Lemma, whose idea we sketch. Suppose that
V={va: A€ A} and W = {w, : v € I'} are Hamel bases of X. Remove one vector vy, from V', so that it

no longer spans (if it did still span, then v,, would be a linear combination of other elements of V|



and V' would not be linearly independent). If w, € span (V' \ {vy,}) for every v € I, then since W spans,

V' \ {vy, } would also span, contradiction. Thus, we can choose v, € I" such that

Wry, ¢ sparn (V \ {vko})
Because w,, € spanV', we can write
n
Wyy = Z QiUx;
i=0

where «y, the coefficient of v,,, is not zero (if it were, then we would have w,, € span (V' \ {vy,})). Since

ap # 0, we can solve for vy, as a linear combination of w,, and vy,,...,vy,, so

span. (V' {vae}) U {wy})

O spanV

= X

(VA {on}) U{wse})

spans X. From the fact that w,, & span (V' \ {vy,}) one can show that

(VA {or}) U{wse})

is linearly independent, so it is a basis of X. Repeat this process to exchange every element of V' with an
element of W (when V is infinite, this is done by a process called transfinite induction). At the end, we

obtain a bijection from V to W, so that V and W are numerically equivalent.m

Definition 5 Let dim X (read “the dimension of X”) denote the cardinal number of any basis of X.



Example: The set of all m x n real-valued matrices is a vector space over R. A basis is given by

where

1 ifk=7iand (=7
(Ei ’)kg =
0 otherwise.

The dimension of the vector space of m x n matrices is mn.

Theorem 6 (1.4) Suppose dimX =n € N. If V C X and |V| > n (recall |V| denotes the number of

elements in the set V'), then V is linearly dependent.

Theorem 7 (1.5%) Suppose dim X =n e N, V C X, |V| =n.

o IfV is linearly independent, then V spans X, so V' is a Hamel basis.

o IfV spans X, then V is linearly independent, so V is a Hamel basis.

Read the material on Affine Spaces on your own.

Section 3.2, Linear Transformations

Definition 8 Let X,Y be two vector spaces over the field . Wesay T : X — Y is a linear transformation
if
Vi meeX ananer 1 (00121 + o) = a1 (x1) + a1 (x2)

Let L(X,Y') denote the set of all linear transformations from X to Y.

Theorem 9 L(X,Y) is a vector space over F.



Proof: The hard part is figuring out what you are being asked to prove. Once you figure that out, this is
completely trivial, although writing out a complete proof that checks all the vector space axioms is rather
tedious. The key is to define scalar multiplication and vector addition, and show that a linear combination

of linear transformations is a linear transformation.
We define

(T + BT)(x) = T (x) + BTs(x)

We need to show that o1} + 515 € L(X,Y).

(T + BTs) (yxy + dx2)
= oTy(yw1 + 0x2) + BTo(yr1 + 0x2)
= a(YTi(21) + 0Ti(22)) + B (VT2(21) + 0T5(x2))
= 7 (@Ti(z1) + BTa(w1)) + 6 (@i (x2) + BTo(22))

= (T + BT3) (x1) + 0 (a1 + BT>) (x2)

so o1y + Ty € L(X,Y). The rest of the proof is too tedious to reproduce here.m

Composition of Linear Transformations

Given R € L(X,Y) and S € L(Y,Z), SoR: X — Z. We will show that So R € L(X, 7).

(S o R)(am + Bws) = S(R(awy + B,))
= S(aR(z1) + BR(z9))
= aS(R(z1)) + BS(R(x2))

= a(SoR)(z1) + B(5 o R)(x)

so SoR e L(X, Z).

Definition 10

Im7T = T(X) (image of T)



kerT = {z:T(x)=0} (kernel of T')

Rank7T = dim(Im7T)

Theorem 11 (2.9, 2.7, 2.6) Let X be a finite-dimensional vector space, T € L(X,Y). Then ImT and

kerT" are vector subspaces of Y and X respectively, and

dim X = dimkerT + Rank T

Theorem 12 (2.13) T € L(X,Y) is one-to-one if and only if ker T = {0}.

Proof: Suppose T is one-to-one. Suppose x € kerT. Then T'(x) = 0. But since T is linear, T(0) =
T(0-0)=0-T7(0) =0. Since T is one-to-one, x = 0, so ker 7" = {0}.

Conversely, suppose that ker 7" = {0}. Suppose T'(z1) = T'(z2). Then

T(l’l—l'Q) = T(l’l)—T(JZ'Q)

so x1 — xg € kerT', so 1 — x5 = 0, x1 = x9. Thus, T is one-to-one.m

Definition 13 T € L(X,Y) is invertible if there is a function S : Y — X such that

VoexS(T(x)) = =

Vyer T(S(y)) =

In other words S o7 = idx and T o S = idy, where id denotes the identity map. Denote S by T~!. Note
that T' is invertible if and only if it is one-to-one and onto. This is just the condition for the existence of

an inverse function. The linearity of the inverse follows from the linearity of 71"



Theorem 14 (2.11) IfT € L(X,Y) is invertible, then T~ € L(Y, X), i.e. T is linear.

Proof: Suppose o, 3 € F' and v,w € Y. Since T is invertible,

Then

soT'eL(Y,X)nm

Although the next theorem is in Section 3.3, it really belongs here:

Theorem 15 (3.2) Let X,Y be two vector spaces over the same field F', and let V = {vy : A € A} be a

basis for X. Then a linear transformation T € L(X,Y") is completely determined by its values on V', i.e.

1. Given any set of values {yx: A € A} C Y,
Frenx ) Vaea T(vx) = ya
2. If S, T € L(X,Y) and S(vy) = T(vy) for all \ € A, then S =T.
Proof:

1. If z € X, x has a unique representation of the form

Z&v,\ a; 00 =1,...,n)
-1



(Aside: for x = 0, we have n = 0.) Define
T(l‘) = Z QiYx;
i=1
Then T'(z) € Y. The verification that 7" is linear is left as an exercise.
2. Suppose S(vy) = T'(vy) for all A € A. Given z € X,
S(x) = S (Z Oéﬂby-)
i=1
- ZOQS (/())\i)
i=1
= Z o T’ (/())\i)
i=1
= T (Z Oéﬂby-)
i=1

= T(x)

so S ="T.

Section 3.3, Isomorphisms

Definition 16 Two vector spaces X,Y over a field F' are isomorphic if there is an invertible (recall this

means one-to-one and onto) T € L(X,Y). T is called an isomorphism.
Isomorphic vector spaces are essentially indistinguishable as vector spaces.

Theorem 17 (3.3) Two vector spaces X,Y over the same field are isomorphic if and only if dim X =

dimY.



Proof: Suppose X, Y are isomorphic, via the isomorphism 7T'. Let
U={uy: e A}

be a basis of X, and let

Uy = T(UA), V= {2))\ TAE A}
Since T is one-to-one, U and V' are numerically equivalent. If y € Y, then there exists € X such that
y = T(x)
=T (Z OQ\Z.UAZ)
i=1
= Z OQ\iT (u>\z>
i=1
= ZOQ\Z.U)\Z.
i=1

which shows that V' spans Y. To see that V is linearly independent, note that if
0 = > B,
i=1
= Y BT (uy,)
i=1
= T (Z @‘U,\z)
i=1

Since T is one-to-one, ker 7' = {0}, so

> Biux, =0
i=1
Since U is a basis, we have #; = --- = ,, =0, so V is linearly independent. Thus, V' is a basis of Y'; since

U and V are numerically equivalent, dim X = dim Y.

10



Now suppose dim X = dim Y. Let

U={uy:AeAland V ={vy: A € A}

be bases of X and Y’; note we can use the same index set A for both because dim X = dimY. By Theorem

3.2, there is a unique 7" € L(X,Y") such that T'(uy) = vy for all A € A. If T'(x) = 0, then

= a1 =---=aqa, = 0since V is a basis
= =0
= kerT = {0}

= T is one-to-one

IfyeV, write y =Y, Biva, Let
Tr = Zﬁzﬂ,\i
i=1
Then
@) = (30w
i=1
= D BT (uy)
i=1
Y
i=1
= Yy

so T'is onto, so T' is an isomorphism and X,Y are isomorphic.m
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