Econ 204 Summer 2009
Problem Set 2 Solutions

1. Boundary, Exterior and Closure

Find the boundary, exterior, and closure of the following sets:

(a) {(z.y) € R?a® +4* > 1}
(b) {(m,y) ER?z—y= 3}

Solution:

(a) Boundary {(z,y) € R*|2? +y? = 1}. Exterior {(z,y) € R?|2? + y? < 1}. Closure {(z,y) € R*z? + y* > 1}.
(b) Boundary {(z,y) € R?|z —y = 3}. Exterior {(z,y) € R*|z — y # 3} .Closure {(z,y) € R*|z —y = 3}.

2. Closed Set
Show that £ = {J: eRY:|z—al< 2} is a closed set where a is a real number.
Solution:

We prove that E¢ is open. Then FE is closed by the definition. Consider = € E€, where E¢ =
{zx € R! ;| z — a |> 2}. There are only two cases, z > a+2and z < a—2. If z > a + 2,
then there exists ¢ = %‘_2 > 0 such that x — ¢ = Lg” >a+2andz+e >z >a+2. So
B. (z) C E°. If £ < a — 2, then there exists ¢ = “_QT_I > 0 such that z+¢ = H% <a—2and
x—e<z<a—2 So B.(r) C E° Hence Vo € E°, there exists € such that B. (x) C E¢ = E°
is open. So F is closed.

3. Intersection of Closed Sets

Suppose {Ay} is a sequence of non-empty closed sets on R™ such that Ay D As D Az... D Ap D
...Show that if A,, is bounded for some m, then N2 ; A # @.

Solution:
Choose any xp € Ak, k=1,2, ...,
Since A, is bounded, {z} is bounded. By Bolzano-Weierstrass theorem, there exists zy and a

subsequence{xy, } of {zx} such that {zy,} — xo. For every k, if k; > k, x, € A, C Aj. Hence
2o = lim;_,o0 Tx; € Ag.Since Ay, is closed, xg € NF2 | Ay.

4. Uniform Continuity in Euclidean Metric Space

(R"™,d) is the n-dimentional Euclidean metric space. Suppose E C R" is a nonempty set. Define
d(z,E) =inf{d(z,y) : y € E}

(a) Show that E is a closed set if and only if for any € R", there exists y € E, such that
d(z,y) = d(z, E).
(b) Define function f: R" — R* as f () = d(x, F). Show that f (z) is uniformly continuous.

Solution:

(a) =: Suppose E is a closed set. Given = € R", since d (z,E) = infycpd(z,y), d(z,E) + +
is not a lower bound for {d(z,y) : y € E}. Therefore we can find y, € E such that
d(z,yp) < d(z,E) + tand d(z,y,) > d (z, E). Hence lim, .o d(z,y,) = d (2, E). So {yn}
is bounded and by Bolzano-Weierstrass theorem there exists a subsequence {y,,} — v.
y € E as E is closed. So there exists y € E d (z,y) = lim; o d (z,yn,;) = d(z, E).

«: Consider a convergent sequence {z,} C E, lim, o @, = xo. There exists y € F such
that d (zo,y) = d(xo, E). Since zg is a cluster point of E, d(z¢,F) =0, so xg =y € E.
Therefore g € E, E is a closed set.



(b) Suppose z,y € R™. Given any 0 > 0, there exists z € F, such that d(z,2) < d(z, E) + 6.
Hence f(y) = d(y, B) < d(y, ) < d(y,z)+d(z, 2) < d(z,y)+d(z, E)+0 = d(z,y)+ f(2)+6.
Since 6 is arbitrary, f(y) — f(z) < d(x,y). Similarly we can get f(z) — f(y) < d(z,y).
Hence | f(y) — f(z) |< d(z,y). So Ve > 0 there exists d(¢) = ¢ such that Vy € R"
d(z,y) < 6(e) = ¢ = p(x,y) =| fly) — f(z) |< d(z,y) < &, which shows that f(z) is

uniformly continuous.

5. Continuous Function in Euclidean Metric Space

(R™,d) is the n-dimentional Euclidean metric space. f : R® — R! is a function. Show that
f is countinuous if and only if for every ¢ € R!', A. and B, are closed sets where A. =
{zeR": f(x)>ctand B.={z e R": f(z) <c}.

Solution:

=: Consider a convergent sequence {z,} C A., lim, o Z,, = xo. Since f(z,) > ¢ and f(z) is
continuous, f(xo) = limy, 00 f(2n) > ¢. So xy € A., A, is a closed set. Similarly we can show
that B, is closed.

«<: If f(z) is not continuous at xg, then there exists ¢g > 0 and {x,} — =zo such that
f(xn) = f(zo) +eo0 or f(zn) < f(xo) — 0. If f(ax) = f(x0) + €0, let ¢ = f(xo) + €o,then
{zn} C Acyxo ¢ Ae, contradiction with that A is closed. If f(z,) < f(zo)—¢€0, let ¢ = f(z0)—¢o,
then contradition with that B, is closed.

6. Lipschitz Equivalent

Theorem 10.8 on page 107 of de la Fuente says that all norms on R™ are Lipschitz-equivalent to
the Euclidean norm. The Theorem is correct, but is the proof correct?

(a) Suppose i1 - n: (R",d) — (R4, p) is a norm on R™. d is the metric generated by the norm,
d(x,y) =nz—yn. pisthe Euclidean metric. Show that n - 11 is a continuous function. (Hint:
Use the triangle inequality.)

(b) Now consider the Euclidean norm n - ng: R®™ — R4. The unit circle on R™ is defined as
C ={zxeR"mzng=1}. Show that C is compact. (Hint: Show that C is closed and
bounded.)

(¢c) Can we use the result of part a and the extreme-value theorem to prove that that i -
attains a minimum and a maximum in the set C' definded in part b?

Solution:

(a) By d(-,) > 0 and triangle inequality we have Vz,y,z € R", d(z,2) < d(z,y) + d(z,y)
= d(z,y) > d(z,z) — d(z,y) and d(z,y) < d(z,z) + d(z,y) = d(z,y) > d(z,y) — d(z, 2).
Hence d(z,y) >| d(x,z) — d(z,y) | .

Suppose 1 - 11is a norm in a R™. Then i1 x — y 11 is a valid metric on R". Take any pair
xz,x9 € R™. We have

e —=0n—nxzo—0u<nz—zon=[izu—unzen[<nz—axu Foranye>0,let §= 5. If
nax—axo <o, then [nz 1 —nzo1|<d =5 <e. Therefore i -1 is a continuous function.

(b) For any convergent sequence {z,} € C, {z,} — x, suppose i  ng> 1, then by continuity
of 11 - g, there exists m € N such that n z,, ng> 1 for all n > m which is contradiction
with that {z,,} € C. Similarly we can show that 1 x ug< 1 is contradiction with {z,} € C.
Hence 1 z ng= 1, x € C. So C is closed. C is bounded by definition. Therefore C is
compact.

(¢c) No. What the extreme value theorem tells us is that

Let C be a compact set in a metric space (X,d) and f : (C,d) — E! a continuous function.
Then f attains both its maximum and its minimum in the set. The compact set C' and the
continuous function f should be with the same metric.

In part a we show that 1 - 11 is a continuous function in metric space (R"™, d). The metric d is
generated by a norm which is not Euclidean. In part b we show that C' is a compact set in



the Euclidean metric space. As d is not Euclidean metric, we can not use the extreme-value
theorem.



