
Econ 204 Summer 2009
Problem Set 2 Solutions

1. Boundary, Exterior and Closure

Find the boundary, exterior, and closure of the following sets:

(a)
�
(x; y) 2 R2jx2 + y2 > 1

	
(b)

�
(x; y) 2 R2jx� y = 3

	
Solution:

(a) Boundary
�
(x; y) 2 R2jx2 + y2 = 1

	
. Exterior

�
(x; y) 2 R2jx2 + y2 < 1

	
. Closure

�
(x; y) 2 R2jx2 + y2 � 1

	
.

(b) Boundary
�
(x; y) 2 R2jx� y = 3

	
. Exterior

�
(x; y) 2 R2jx� y 6= 3

	
:Closure

�
(x; y) 2 R2jx� y = 3

	
.

2. Closed Set

Show that E =
�
x 2 R1 :j x� a j� 2

	
is a closed set where a is a real number.

Solution:

We prove that Ec is open. Then E is closed by the de�nition. Consider x 2 Ec; where Ec =
fx 2 R1 :j x � a j> 2g: There are only two cases, x > a + 2 and x < a � 2. If x > a + 2,
then there exists " = x�a�2

2 > 0 such that x � " = x+a+2
2 > a + 2 and x + " > x > a + 2. So

B" (x) � Ec. If x < a� 2, then there exists " = a�2�x
2 > 0 such that x+ " = a�2+x

2 < a� 2 and
x� " < x < a� 2: So B" (x) � Ec. Hence 8x 2 Ec, there exists " such that B" (x) � Ec ) Ec

is open. So E is closed.

3. Intersection of Closed Sets

Suppose fAkg is a sequence of non-empty closed sets on Rn such that A1 � A2 � A3::: � Ak �
:::Show that if Am is bounded for some m, then \1k=1Ak 6= ?.
Solution:

Choose any xk 2 Ak, k = 1; 2; :::;
Since Am is bounded, fxkg is bounded. By Bolzano-Weierstrass theorem, there exists x0 and a
subsequencefxkig of fxkg such that fxkig ! x0. For every k, if ki > k, xki 2 Aki � Ak. Hence
x0 = limi!1 xki 2 Ak:Since Ak is closed, x0 2 \1k=1Ak.

4. Uniform Continuity in Euclidean Metric Space

(Rn; d) is the n-dimentional Euclidean metric space. Suppose E � Rn is a nonempty set. De�ne
d (x;E) = inf fd(x; y) : y 2 Eg

(a) Show that E is a closed set if and only if for any x 2 Rn, there exists y 2 E, such that
d (x; y) = d (x;E).

(b) De�ne function f : Rn ! R+ as f (x) = d (x;E). Show that f (x) is uniformly continuous.

Solution:

(a) ): Suppose E is a closed set. Given x 2 Rn, since d (x;E) = infy2E d (x; y), d (x;E) + 1
n

is not a lower bound for fd (x; y) : y 2 Eg. Therefore we can �nd yn 2 E such that
d(x; yn) < d (x;E) +

1
nand d(x; yn) � d (x;E). Hence limn!1 d (x; yn) = d (x;E). So fyng

is bounded and by Bolzano-Weierstrass theorem there exists a subsequence fynig ! y.
y 2 E as E is closed. So there exists y 2 E d (x; y) = limi!1 d (x; yni) = d (x;E).
(: Consider a convergent sequence fxng � E, limn!1 xn = x0. There exists y 2 E such
that d (x0; y) = d (x0; E). Since x0 is a cluster point of E, d (x0; E) = 0, so x0 = y 2 E.
Therefore x0 2 E, E is a closed set.
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(b) Suppose x; y 2 Rn. Given any � > 0, there exists z 2 E, such that d(x; z) < d(x;E) + �.
Hence f(y) = d(y;E) � d(y; z) � d(y; x)+d(x; z) < d(x; y)+d(x;E)+� = d(x; y)+f(x)+�:
Since � is arbitrary, f(y) � f(x) � d(x; y). Similarly we can get f(x) � f(y) � d(x; y).
Hence j f(y) � f(x) j� d(x; y). So 8" > 0 there exists �(") = " such that 8y 2 Rn

d(x; y) < �(") = " ) �(x; y) =j f(y) � f(x) j� d(x; y) < ", which shows that f(x) is
uniformly continuous.

5. Continuous Function in Euclidean Metric Space

(Rn; d) is the n-dimentional Euclidean metric space. f : Rn ! R1 is a function. Show that
f is countinuous if and only if for every c 2 R1, Ac and Bc are closed sets where Ac =
fx 2 Rn : f (x) � cg and Bc = fx 2 Rn : f (x) � cg.
Solution:

): Consider a convergent sequence fxng � Ac, limn!1 xn = x0. Since f(xn) � c and f(x) is
continuous, f(x0) = limn!1 f(xn) � c. So x0 2 Ac, Ac is a closed set. Similarly we can show
that Bc is closed.

(: If f(x) is not continuous at x0, then there exists "0 > 0 and fxng ! x0 such that
f(xn) � f(x0) + "0 or f(xn) � f(x0) � "0. If f(xk) � f(x0) + "0, let c = f(x0) + �0;then
fxng � Ac;x0 =2 Ac, contradiction with that Ac is closed. If f(xn) � f(x0)�"0, let c = f(x0)��0;
then contradition with that Bc is closed.

6. Lipschitz Equivalent

Theorem 10.8 on page 107 of de la Fuente says that all norms on Rn are Lipschitz-equivalent to
the Euclidean norm. The Theorem is correct, but is the proof correct?

(a) Suppose q � q: (Rn; d) ! (R+; �) is a norm on Rn. d is the metric generated by the norm,
d(x; y) =q x�y q. � is the Euclidean metric. Show that q � q is a continuous function. (Hint:
Use the triangle inequality.)

(b) Now consider the Euclidean norm q � qE : Rn ! R+. The unit circle on Rn is de�ned as
C = fx 2 Rn :q x qE= 1g. Show that C is compact. (Hint: Show that C is closed and
bounded.)

(c) Can we use the result of part a and the extreme-value theorem to prove that that q � q
attains a minimum and a maximum in the set C de�nded in part b?

Solution:

(a) By d(�; �) � 0 and triangle inequality we have 8x; y; z 2 Rn; d(x; z) � d(x; y) + d(z; y)
) d(x; y) � d(x; z) � d(z; y) and d(z; y) � d(x; z) + d(x; y) ) d(x; y) � d(z; y) � d(x; z).
Hence d(x; y) �j d(x; z)� d(z; y) j :
Suppose q � q is a norm in a Rn. Then q x � y q is a valid metric on Rn. Take any pair
x; x0 2 Rn. We have
jq x� 0 q � q x0 � 0 qj�q x� x0 q)jq x q � q x0 qj�q x� x0 q. For any " > 0, let � = "

2 . If
q x� x0 q< � , then jq x q � q x0 qj� � = "

2 < ". Therefore q � q is a continuous function.
(b) For any convergent sequence fxng 2 C, fxng ! x, suppose q x qE> 1, then by continuity

of q � qE , there exists m 2 N such that q xn qE> 1 for all n > m which is contradiction
with that fxng 2 C. Similarly we can show that q x qE< 1 is contradiction with fxng 2 C.
Hence q x qE= 1, x 2 C. So C is closed. C is bounded by de�nition. Therefore C is
compact.

(c) No. What the extreme value theorem tells us is that
Let C be a compact set in a metric space (X; d) and f : (C; d)! E1 a continuous function.
Then f attains both its maximum and its minimum in the set. The compact set C and the
continuous function f should be with the same metric.
In part a we show that q � q is a continuous function in metric space (Rn; d): The metric d is
generated by a norm which is not Euclidean. In part b we show that C is a compact set in
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the Euclidean metric space. As d is not Euclidean metric, we can not use the extreme-value
theorem.
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