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Section 7.1 Two De�nitions of Compactness

� Lecture 6 De�nition 1: A collection of sets U = fU� : � 2 �g in a metric space (X; d)
is an open cover of A if U� is open for all � 2 � and [�2�U� � A.

� Lecture 6 De�nition 1: A set A in a metric space is compact if every open cover of A
contains a �nite subcover of A. In other words, if fU� : � 2 �g is an open cover of A, there
exist n 2 N and �1; : : : ; �n 2 � such that A � U�1 [ : : : [ U�n .

� Lecture 6 De�nition 4: A set A in a metric space (X; d) is sequentially compact if
every sequence of elements of A contains a convergent subsequence whose limit lies in A.

Example 7.1.1 Exhibit an open cover of (0; 1) with no �nite sub-cover.
Solution:
Consider the cover f(0; 1 � 1=n)g. This covers (0; 1) but has no �nite subcover. Observe
that the sequence of intervals is increasing, hence any �nite cover is equivalent to a cover of
the form (0; 1� 1=N), for some N . This interval is clearly a proper subset of (0; 1).

Example 7.1.2 Show that Q \ [0;2] is not compact.
Solution:
We can �nd a counter-example. Let Un = (�1;

p
2 � 1

n ) [ (
p
2 + 1

n ; 3). The collection of
sets given by [n2NUn = (�1;

p
2)[ (

p
2; 3) is an open cover of Q \ [0;2]. Since Q is dense,

for every �nite number N , there exists a rational number q 2 Q \ [
p
2 � 1

N ;
p
2 + 1

N ]. So
any �nite subcollection does not cover Q \ [0;2].

Example 7.1.3 Show that a �nite union of compact sets is compact.
Solution:
Let A1; : : : ; An be compact sets and consider any open cover of A1[� � �[An. This open cover
must cover each Ai individually, and because each Ai is compact, there must be a �nite sub-
cover of each Ai. The union of these n subcovers is �nite, and clearly it covers A1[� � �[An.
Therefore every open cover of A1[� � �[An has a �nite subcover, so A1[� � �[An is compact.

Example 7.1.4 (Cantor�s Intersection Theorem) Use the open cover de�nition of
compactness to prove a decreasing sequence of nonempty compact subsets A1 � A2 � � � �
of a metric space (X; d) has nonempty intersection.
Solution:
By contradiction. Suppose their intersection in empty: A1 \ A2 \ � � � = �. Since A1 �
A2 � � � � and they are nonempty sets, A2 \ A3 \ � � � = �. Let U = Xn(A2 \ A3 \ � � � ) =
XnA2 [ XnA3 [ � � � and it is open, so it constructs an open cover for A1. Because A1
is compact, there exists a �nite subcover XnA2 [ XnA3 [ � � � [ XnAN � A1. Then its
complement Xn(XnA2[XnA3[� � �[XnAN ) = A2\A3\� � �\AN has no common element
with A1 , A1 \ A2 \ A3 \ � � � \ AN = �. But we know A1 \ A2 \ A3 \ � � � \ AN = AN .
Contradiction.

Example 7.1.5 Let fxng be a convergent sequence in a metric space with limit l. Show
that the set fl; x1; x2; x3; x4; :::g is compact.
Solution:
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If fxng converges, then it is bounded and it has exactly one limit point. Let[i2IAi be an
open cover of the set X = fl; x1; x2; : : : xn : : :g. This means that for all x 2 X, 9i 2 I such
that x 2 Ai. Let take one i 2 I such that l 2 Ai and label this i as i0 . Because l is a limit
point of fxng, Ai0 must contain in�nitely many elements of fxng. Also, because xn ! l,
X \ Aci0 is �nite. To see this, we recall from the de�nition of open sets that there exists
an " > 0 such that B"(l) � Ai0 . From the de�nition of convergence, 9N 2 N such that
n > N ) xn 2 B"(l). So n > N ) xn =2 B"(l)c and there are at most N elements of fxng
in B"(l)c. Because Aci0 � B"(l)

c, this also means that there are only �nitely many elements
of X not in Ai0 . For each n � N , take one i 2 I such that xn 2 Ai and relabel it with in.
Then [n=0;1;:::NAin is a �nite subcover (not necessary minimal, in the sense that some sets
may be dispensable). This proves that X is compact.

Section 7.2 Closed, Totally Bounded and Compact

� Lecture 6 Theorem 2: Every closed subset A of a compact metric space (X; d) is compact.

� Lecture 6 Theorem 3: If A is a compact subset of the metric space (X; d), then A is closed.

� Lecture 6 De�nition 6: A set A in a metric space (X; d) is totally bounded if, for every
" > 0, 9x1; : : : ; xn 2 AA � [ni=1B"(xi).

� Lecture 6 Theorem 7: Let A be a subset of a metric space (X; d). Then A is compact if and
only if it is complete and totally bounded.

� Lecture 6 Corollary 8: Let A be a subset of a complete metric space (X; d). Then A is
compact if and only if it is closed and totally bounded.

� Lecture 6 Theorem 10 (Heine-Borel): If A � En, then A is compact if and only if A is
closed and bounded.

Example 7.2.1 Show that R is not compact
Solution 1:
We can �nd a counter-example. Let Un = (n � 1; n + 1). The collection of sets given by
[n2NUn is an open cover of R. Any �nite subcollection does not cover R.
Solution 2:
By Heine Borel theorem, since R is not bounded, the result follows immediately.
Example 7.2.2 Consider metric space (X; d): Let X = [0; 1] � R. d is de�ned as

d(x; y) =

(
0 x = y

1 x 6= y

Is (X; d) closed? Is (X; d) totally bounded? Is (X; d) complete? Is (X; d) compact?
Solution:
We know that under discrete metric d, every set is both open and closed. And any open
ball

B"(x) =

(
[0; 1] " � 1
x " < 1

When " < 1 , the open ball around any point is just the point itself, in this case, since there
are in�nitely many points in [0; 1], any union of �nitely many points can not cover [0; 1].
Therefore it is not totally bounded. It is complete since for a Cauchy sequence, the points
could be arbitrarily close �in the case of the discrete metric, the points are the same. Thus,
any Cauchy sequence, under the discrete metric, converges. The set is complete. Since it is
not totally bounded, it is not compact. Alternatively, you can show a open cover with no
�nite subcover: [all x2[0;1]B 1

2
(x).

Example 7.2.3 Let U1 � U2 � U3 � :::: be open subsets of R with non-empty and
bounded complement. Prove that

S1
j=0 Uj 6= R.
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Solution:
The Uj

c are closed and bounded, hence compact by the Heine-Borel Theorem. Note that
since Uj

c � Uj+1
c and each Uj 6= ;; R ) for each n,

Tn
j=1 fUjgc 6= ;. For each n,

choose an element of
Tn
j=1 Uj

c and label it xn. Note that fxng � fU1gc. By com-
pactness, this sequence has a convergent subsequence with limit L 2 fU1gc. We claim
that, in fact, L 2

T1
j=1 fUjgc. To see this, denote the convergent subsequence by fxnkg.

From the construction of the sequence it follows that fxnkg1k=1 � fUn1gc; fxnkg1k=2 �
fUn2gc; fxnkg1k=3 � fUn3gc; etc:. Note that L 2 fUnkgc 8k, by compactness. This im-
plies that L 2

T1
k=1 fUnkgc =

T1
j=1 fUjgc. The latter equality follows because the fUjgc

form a decreasing sequence. Hence, given any fUjgc 9nk such that fUnkgc � fUjgc. Sim-
ilarly, given any fUnkgc; 9 j such that fUnkgc � fUjgc. Consequently,

T1
j=1 fUjgc 6= ;

)
S1
j=1 Uj 6= R.

Example 7.2.4 Suppose that for some " > 0, the closure of every "-open ball in X is
compact (Every "-cloesd ball in X is compact). Show that X is complete.
Solution:
Let fxng be a Cauchy sequence in X. We know that there exists some M such that
8m;n > M; d(xm; xn) < ". Let N = M + 1. Consider B"(xN ) and its closure, B"[xN ].
Since d(xm; xN ) < " for all m � N; we have xn 2 B"(xN ) � B"[xN ] for all n � N . The
subsequence of fxng consisting of all xn such that n � N is clearly also a Cauchy sequence
and it is contained entirely in B"[xN ], which, by hypothesis, is compact. We know that
a sequence in a compact set must have a convergent subsequence, and Theorem 7.8 in de
la Fuente establishes that a Cauchy sequence with a convergent subsequence must itself
converge. Thus, the sequence fxn; n � Ng must converge and naturally the fxng must
converge as well. Therefore, X is complete.

Example 7.2.5 Let (X; d) be a metric space, A;B � X. d(A;B) = inffd(a; b) : a 2 A; b 2
Bg: Assume that A is compact, B is closed and A \B = ;.
(a)Prove that d(A;B) > 0
(b)Suppose that B is also compact. Prove that there exist a 2 A, b 2 B such that d(A;B) =
d(a; b).
(c)Is (b) true if B is just closed?
Solution:
(a) We prove it by contradiction. Suppose that d(A;B) = 0. Since d(A;B) = inffd(a; b) :
a 2 A; b 2 Bg, so 8 n 2 N, there exist an 2 A, bn 2 B such that d(an; bn) < 1=n. Since A is
compact, so fang contains a convergent subsequence fankg whose limit, a, lies in A (from
the de�nition of sequentially compact). d(bnk ; a) � d(bnk ; ank) + d(ank ; a) < 2=n, so also
converges to a. Since B is closed, so a 2 B, so a 2 A\B, which contradicts the assumption
that A \B = ;
(b) d(A;B) = inffd(a; b) : a 2 A; b 2 Bg, so 8 n 2 N, there exists an 2 A, bn 2 B , such
that d(A;B) � d(an; bn) � d(A;B) + 1=n. A is compact, so fang contains a convergent
subsequence fankg whose limit lies in A; B is compact, so fbng contains convergent sub-
sequence fbnkg whose limit lies in B. For each n, d(a; b) � d(a; an) + d(an; bn) + d(bn; b):
The �rst term converges to zero, the second term converges to d(A;B), and the third term
converges to zero, so d(a; b) � d(A;B). But d(A;B) � d(a; b), so d(a; b) = d(A;B).
(c) If B is merely closed, the result is not true. For example, suppose A = [0; 1]; B = (2; 3],
and X = A[B, with the Euclidean metric. B is closed in X, A is compact, and d(A;B) = 1,
but d(a; b) > 1 for every a 2 A; b 2 B.

Section 7.3 Continuous Function and Compactness

� Lecture 6 Theorem 11: Let (X; d) and (Y; �) be metric spaces. If f : X ! Y is
continuous and C � X is compact in (X; d), then f(C) is compact in (Y; �).

� Lecture 6 Corollary 12 (Extreme Value Theorem): Let C be a compact set in a
metric space (X; d), and supposef : C ! R is continuous. Then f is bounded on C and
attains its minimum and maximum on C.
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� Lecture 6 Theorem 13: Let (X; d) and (Y; �) be metric spaces, C � X compact, and
f : C ! Y continuous. Then f is uniformly continuous on C.

Example 7.3.1 (Extension of Example 5.2.3) Consider a subset A of an arbitrary metric
space (X; d). The distance between a point x 2 X and the set A is de�ned as d(x;A) =
infa2Ad(x; a). De�ne the function f : X ! R by f(x) = d(x;A), and let the metric on the
range be Euclidean. In Example 5.2.3, we have shown that 1. djf(x)�f(y)j � d(x; y)8x; y 2
X and 2. f is uniformly continuous. Now you are asked to show
3. If A is compact, then 9a 2 A such that d(x; a) = d(x;A).
4. Does the statement of part (c) hold if A is closed but not necessarily compact? If so,
prove it. If not, provide a counter-example.
Solution:
3. We can see a similar example in PS2. After we learned compactness, using the de�nition
of sequential compactness would simplify the proof:By the de�nition of in�mum, 8n 2 N;
9an 2 A; s.t. d(x;A) � d(x; an) � d(x;A) + 1

n :Therefore we have a sequence fang of A
and d(x; an) ! d(x;A): Since A is compact, by the sequential compactness we know that
9fankg of fang s.t. ank ! a 2 A: So d(x; ank) ! d(x; a). And since d(x; an) ! d(x;A) )
d(x; ank) ! d(x;A) as fankg is a subsequence of fang. By the uniqueness of limit point,
we know d(x;A) = d(x; a) where a 2 A: So we are done.
4. Does the statement of part (c) hold if A is closed but not necessarily compact? If so,
prove it. If not, provide a counter-example.
Solution: False. As a counterexample, let X = R n f0g, A = f 1n : n 2 Ng. This set is
closed because zero is not in the universe, and it is clearly bounded, but it is not compact.
This can be established using an open cover such as the innite union of intervals of the form
( 1n ; 2) for n 2 N, which has no �nite sub-cover. Now consider any negative real number z
and the fact that f(z) =

��z��. However, zero is not in A (nor is it in X) so there is no point
a 2 A such that d(z; a) = d(z;A) = f(z).

4


