
Econ 204
Taylor’s Theorem

In this supplement, we give alternative versions of Taylor’s Theorem.
For univariate functions, we provide a different formulation of the error term
using so-called “little oh” and “big Oh” notation. For multivariate functions,
we provide the quadratic form of Taylor’s Theorem (de la Fuente just provides
the linear form, with quadratic error term) and analyze it as a quadratic form
using the machinery in the Supplement to Section 3.6.

Definition 1 We say
y = o(x) as x → 0

if |y|
|x| → 0 as x → 0

and
y = O(x) as x → 0

if |y|
|x| is bounded as x → 0

or more formally
∃M ∃ε>0 |x| ≤ ε ⇒ |y| ≤ M |x|

The following theorem is a consequence of Theorem 1.9 on page 160 of de la
Fuente. In my experience, knowing the exact form of the error term En as
given in de la Fuente is not particularly useful, because one does not know in
advance the location of x + λh at which En is evaluated. However, if f has
an (n + 1)st derivative which is continuous, one can obtain a O (hn+1) error
term from the formula for En.

Theorem 2 (Taylor’s Theorem for Univariate Functions) Let f : I →
R be n-times differentiable, where I ⊆ R is an open interval. If x ∈ I, then

f(x + h) = f(x) +
n∑

k=1

f (k)(x)hk

k!
+ o (hn) as h → 0
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If f is (n + 1)-times continuously differentiable, then

f(x + h) = f(x) +
n∑

k=1

f (k)(x)hk

k!
+ O

(
hn+1

)
as h → 0

In the following theorem, Equation (1) is just a restatement of the definition
of differentiability, while Equation (2) is a consequence of Theorem 4.4 on
page 181 of de la Fuente. Note that the linear term Df(x)(h) here and in de
la Fuente is evaluated at the known point x. However, the quadratic term
in de la Fuente is evaluated at the unknown point x + λh; here, that term
is incorporated into the “big Oh” error term. The version in de la Fuente is
stated for functions from Rn to R1, while this version is stated for functions
from Rn to Rm; the restriction is needed in de la Fuente’s formulation because
the point x + λh will be different for different components in the range; the
“big Oh” notation allows us to easily state Taylor’s Theorem for functions
taking values in Rm.

Theorem 3 (Taylor’s Theorem for Multivariate Functions–Linear Form)
Suppose X ⊆ Rn is open, x ∈ X, and f : X → Rm is differentiable. Then

f(x + h) = f(x) + Df(x)(h) + o (|h|) as h → 0 (1)

If f is C2, then

f(x + h) = f(x) + Df(x)(h) + O
(
|h|2

)
as h → 0 (2)

In understanding the geometry of preference relations and utility functions
(including sufficient conditions for the differentiability of demand), it is very
useful to have a quadratic version of the multivariate form of Taylor’s Theo-
rem. To keep notation simple, we restrict attention to the case of functions
from Rn to R1; this suffices for the treatment of utility functions, and it is
easy to generalize to functions from Rn to Rm by treating each component
of the range separately.

Definition 4 Let X ⊆ Rn be open, x ∈ R, and f ∈ C2(x). Let

D2f(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂x1

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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denote the matrix of second partial derivatives of f , evaluated at x.

Recall that
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

so D2f(x) is a symmetric matrix.

Theorem 5 (Taylor’s Theorem for Multivariate Functions–Quadratic Form)
Suppose X ⊆ Rn is open, x ∈ X, and f : X → R is C2. Then

f(x + h) = f(x) + Df(x)(h) +
1

2
hT D2f(x)h + o

(
|h|2

)
as h → 0

If f is C3, then

f(x + h) = f(x) + Df(x)(h) +
1

2
hTD2f(x)h + O

(
|h|3

)
as h → 0

Remark 6 Theorem 5 is a stronger version of de la Fuente’s Theorem 4.4.
Note that we don’t need to assume that X is convex. Since X is open, if
x ∈ X, there exists δ > 0 such that Bδ(x) ⊆ X and Bδ(x) is convex.

Because D2f(x) is symmetric, we can apply the diagonalization results from
the Supplement to Section 3.6, to obtain the following corollary:

Corollary 7 Suppose X ⊆ Rn is open, x ∈ X, and f : X → R is C2. Then
there is an orthonormal basis {v1, . . . , vn} of Rn such that

f(x + γ1v1 + . . . + γnvn)

= f(x) +
n∑

i=1

γi
∂f

∂vi
(x) +

1

2

n∑
i=1

λiγ
2
i + o

(
|γ|2

)
as γ → 0

where
∂f

∂vi

(x) = Df(x)vi

is the directional derivative of f in the direction vi, evaluated at x. In addi-
tion,
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1. If f is C3, then

f(x + γ1v1 + . . . + γnvn)

= f(x) +
n∑

i=1

γi
∂f

∂vi
(x) +

1

2

n∑
i=1

λiγ
2
i + O

(
|γ|3

)
as γ → 0

2. If f has a local maximum or minimum at x, then Df(x) = 0.

3. If Df(x) = 0, then

(a) If λ1, . . . , λn > 0, then f has a local minimum at x.

(b) If λ1, . . . , λn < 0, then f has a local maximum at x.

(c) If λi < 0 for some i and λj > 0 for some j, then f has a saddle
at x (i.e. f has neither a local maximum nor a local minimum at
x).

(d) If λ1, . . . , λn ≥ 0 and λi > 0 for some i, then f has either a local
minimum or a saddle at x.

(e) If λ1, . . . , λn ≤ 0 and λi < 0 for some i, then f has either a local
maximum or a saddle at x.
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