
Appendix VIII

The generalized kinked specification

We continue to assume that state 2 has an objectively known probability 2 =
1
3
, whereas states 1

and 3 occur with unknown probabilities 1 and 3. The utility of a portfolio x = (1 2 3) takes

the the following form:

I. 2 ≤ min
11(2) + 12(min) + 13(max)

II. min ≤ 2 ≤ max
21(min) + 22(2) + 23(max)

III. max ≤ 2
31(min) + 32(max) + 33(2)

where min = min{1 3} and max = max{1 3}. This formulation (equation 3) embeds the
kinked specification (equation 1) as a special case. At the end of this note, we show that, through a

suitable change of variables, the generalized kinked specification can also be interpreted as reflecting

Recursive Nonexpected Utility (RNEU) where the ambiguity is modeled as an equal probability

that 1 =
2
3
or 3 =

2
3
. We begin by deriving the optimality conditions.

[1] Parameter restrictions

[1.1] Consistency

When 2 = min, consistency requires that¡
11 + 12

¢
 (min) + 13 (max) =

¡
21 + 22

¢
 (min) + 23 (max) 

Without loss of generality we can assume that

11 + 12 + 13 = 21 + 22 + 23

in which case the equation preceding the last implies that¡
11 + 12

¢
[ (min)−  (max)] =

¡
21 + 22

¢
[ (min)−  (max)]

or

11 + 12 = 21 + 22

Similarly, when 2 = max consistency requires that

22 + 23 = 32 + 33

We further normalize the coefficients so that



1 + 


2 + 


3 = 1 for all 

1



This leads to the following:

13 = 23 
2
1 = 31

[1.2] Reparametrization

Let

11= 1 
1
1 + 12 = 2

21= 3 
3
1 + 32 = 4

Using the consistency conditions, the original coefficients are reparametrized as follows:

11= 1 
1
2 = 2 − 1 

1
3 = 1− 2

21= 3 
2
2 = 2 − 3 

2
3 = 1− 2

31= 3 
3
2 = 4 − 3 

3
3 = 1− 4

Note that 1 ≤ 2 ≤ 1, 3 ≤ 2 and 3 ≤ 4. The utility of a portfolio x = (1 2 3) can be

written with parameters 1  4:

I. 2 ≤ min
1(2) + (2 − 1)(min) + (1− 2)(max)

II. min ≤ 2 ≤ max
3(min) + (2 − 3)(2) + (1− 2)(max)

III. max ≤ 2
3(min) + (4 − 3)(max) + (1− 4)(2)

We adopt a simpler three-parameter model, in which the parameter  measures the ambiguity

attitudes, the parameter  measures pessimism/optimism, and  is the coefficient of absolute risk

aversion. The mapping from the two parameters  and  to the four parameters 1  4 is given

by the equations

1=
1

3
+ 

2=
2

3
+  + 

3=
1

3
+  + 

4=
2

3
+ 

with −1
3
    1

3
and −1

3
  +   1

3
so that the decision weight attached to each payoff in

equation 3 is nonnegative.
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[2] Optimal solutions

By the symmetry property between 1 and 3, we know that 1 ≤ 3 if and only if 1 ≥ 3.

We can use this fact to identify the price of min as max = max {1 3}. Similarly, we can identify
the price of max as min = min {1 3}. For the rest of the note, we denote

= min and  = max

= max and  = min

The maximization of the generalized kinked utility function can be broken down into three

sub-problems:

• SP1: 2 ≤ 

max
x

µ
1

3
+ 

¶
 (2) +

µ
1

3
+ 

¶
 () +

µ
1

3
−  − 

¶
 ()

s.t. p · x = 1,  −  ≥ 0 and  − 2 ≥ 0

• SP2:  ≤ 2 ≤ 

max
x

µ
1

3
+  + 

¶
 () +

µ
1

3

¶
 (2) +

µ
1

3
−  − 

¶
 ()

s.t. p · x = 1,  − 2 ≥ 0 and 2 −  ≥ 0

• SP3:  ≤ 2

max
x

µ
1

3
+  + 

¶
 () +

µ
1

3
− 

¶
 () +

µ
1

3
− 

¶
 (2)

s.t. p · x = 1,  −  ≥ 0, and 2 −  ≥ 0

We adopt the CARA utility function () = −1

−. Instead of characterizing the exact

conditions of prices and model parameters that tell which sub-problem the optimal solution of

demands belongs to, we can adopt the following two-step algorithm computing a (globally) optimal

demand:

Step 1 Given a price vector p and parameter values (  ), compute a (locally) optimal solution

in each of the three sub-problems.

Step 2 Compare the utilities of locally optimal solutions of three sub-problems and choose one

yielding the highest utility as a (globally) optimal solution of demand.

In what follows, we characterize optimal demand with conditions on parameters in each sub-

problem. Due to the fact that the CARA utility function generates a boundary solution for

certain price vectors, we first set up the Lagrangian function for optimal solutions without the

non-negativity condition of demand and impose that condition later, for computational ease.
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[2.1] SP1: 2 ≤ 
The Lagrangian function without the non-negativity condition of demand is given by

L (x) =
µ
1

3
+ 

¶
 (2) +

µ
1

3
+ 

¶
 () +

µ
1

3
−  − 

¶
 ()

+1 ( − 2) + 2 ( − ) +  (1− 11 − 22 − 33) 

The necessary conditions for the maximization problem are given by

L2 (x) =
µ
1

3
+ 

¶
exp{−2}− 1 − 2 = 0

L (x) =
µ
1

3
+ 

¶
exp{−}+ 1 − 2 −  = 0

L (x) =
µ
1

3
−  − 

¶
exp{−}+ 2 −  = 0

1 ( − 2) = 0 = 2 ( − )  1 ≥ 0 2 ≥ 0
 − 2≥ 0  −  ≥ 0

1= 11 + 22 + 33   0

[2.1.1] 1  0 and 2  0

This implies that ∗ = ∗2 = ∗ . Then the optimal demand is given by

∗1 = ∗2 = ∗3 =
1

1 + 2 + 3


For the parameter conditions leading to this solution, we need to check the following:µ
1

3
+ 

¶
exp (−2)2µ

1

3
−  − 

¶
exp (−) µ

2

3
+  + 

¶
exp (−) (2 + ) µ

2

3
− 

¶
exp (−) (1 + 3) 

which yields the following inequality conditions under the optimal solution:

ln

µ
2



¶
 ln

Ã
1
3
+ 

1
3
−  − 

!


ln

µ
2

1 + 3

¶
 ln

Ã
1
3
+ 

2
3
− 

!


ln

µ
2 + 



¶
 ln

Ã
2
3
+  + 

1
3
−  − 

!
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[2.1.2] 1 = 0 and 2  0

This implies that ∗1 = ∗3  ∗2. The solution without non-negativity condition is given by

∗2=
1

1 + 2 + 3
− (1 + 3)

 (1 + 2 + 3)

"
ln

µ
2

1 + 3

¶
− ln

Ã
1
3
+ 

2
3
− 

!#


∗1= ∗3 =
1

1 + 2 + 3
+

2

 (1 + 2 + 3)

"
ln

µ
2

1 + 3

¶
− ln

Ã
1
3
+ 

2
3
− 

!#


The inequality conditions for this solution are given by

ln

µ
2

1 + 3

¶
 ln

Ã
1
3
+ 

2
3
− 

!


ln

µ




¶
 ln

Ã
1
3
+ 

1
3
−  − 

!


If ∗2 ≥ 0, then the optimal demand is

∗2=
1

1 + 2 + 3
− (1 + 3)

 (1 + 2 + 3)

"
ln

µ
2

1 + 3

¶
− ln

Ã
1
3
+ 

2
3
− 

!#


∗1= ∗3 =
1

1 + 2 + 3
+

2

 (1 + 2 + 3)

"
ln

µ
2

1 + 3

¶
− ln

Ã
1
3
+ 

2
3
− 

!#


If ∗2  0, then the optimal demand is given by

∗2 = 0 and ∗1 = ∗3 =
1

2 + 3


[2.1.3] 1  0 and 2 = 0

This implies that ∗2 = ∗  ∗ . The solution without non-negativity condition is given by

∗2= ∗ =
1

1 + 2 + 3
− 

 (1 + 2 + 3)

"
ln

µ
2 + 



¶
− ln

Ã
2
3
+  + 

1
3
−  − 

!#


∗ =
1

1 + 2 + 3
+

2 + 

 (1 + 2 + 3)

"
ln

µ
2 + 



¶
− ln

Ã
2
3
+  + 

1
3
−  − 

!#


The inequality condition for this solution is given by

ln

µ
2 + 



¶
 ln

Ã
2
3
+  + 

1
3
−  − 

!


ln

µ
2



¶
 ln

Ã
1
3
+ 

1
3
+ 

!


5



If ∗2 = ∗ ≥ 0, the optimal demand will be the same as above:

∗2= ∗ =
1

1 + 2 + 3
− 

 (1 + 2 + 3)

"
ln

µ
2 + 



¶
− ln

Ã
2
3
+  + 

1
3
−  − 

!#


∗ =
1

1 + 2 + 3
+

2 + 

 (1 + 2 + 3)

"
ln

µ
2 + 



¶
− ln

Ã
2
3
+  + 

1
3
−  − 

!#


If ∗2 = ∗  0, the optimal demand will be

∗2 = ∗ = 0 and ∗ =
1




[2.1.4] 1 = 0 and 2 = 0

This implies that ∗  ∗  ∗2. The solution without non-negativity condition is given by

∗2=
1

1 + 2 + 3
− 

 (1 + 2 + 3)

"
ln

µ
2



¶
− ln

Ã
1
3
+ 

1
3
+ 

!#

− 

 (1 + 2 + 3)

"
ln

µ
2



¶
− ln

Ã
1
3
+ 

1
3
−  − 

!#


∗ =
1

1 + 2 + 3
+

2 + 

 (1 + 2 + 3)

"
ln

µ
2



¶
− ln

Ã
1
3
+ 

1
3
+ 

!#

− 

 (1 + 2 + 3)

"
ln

µ
2



¶
− ln

Ã
1
3
+ 

1
3
−  − 

!#


∗ =
1

1 + 2 + 3
− 

 (1 + 2 + 3)

"
ln

µ
2



¶
− ln

Ã
1
3
+ 

1
3
+ 

!#

+
2 + 

 (1 + 2 + 3)

"
ln

µ
2



¶
− ln

Ã
1
3
+ 

1
3
−  − 

!#


If the non-negativity condition for each asset is satisfied, then the above solution is the optimal

demand from the problem with the non-negativity condition of demands. Otherwise, we need to

further refine the problem by setting an asset violating the non-negativity condition to be zero.

There are two cases to consider: () ∗2  ∗  0, () 
∗
2  0 and ∗  0.

() ∗2  ∗  0

The optimal solution is then given by

∗ =
1


and ∗2 = ∗ = 0

() ∗2  0 and ∗  0
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The solution to the problem by imposing that ∗2 = 0 is given by

0=
1

1 + 3
− 

 (1 + 3)

"
ln

µ




¶
− ln

Ã
1
3
+ 

1
3
−  − 

!#


0 =
1

1 + 3
+



 (1 + 3)

"
ln

µ




¶
− ln

Ã
1
3
+ 

1
3
−  − 

!#


If 0 ≥ 0, then the solution with ∗2 = 0 is the optimal one in the original problem with the

non-negativity condition of demands:

∗2 = 0 
∗
 = 0 and ∗ = 0 

If 0  0, then the optimal solution is given by

∗2 = ∗ = 0 and ∗ =
1




[2.2] SP2:  ≤ 2 ≤ 
The Lagrangian function without the non-negativity condition of demand is given by

L (x) =
µ
1

3
+  + 

¶
 () +

µ
1

3

¶
 (2) +

µ
1

3
−  − 

¶
 ()

+1 ( − 2) + 2 (2 − ) +  (1− 11 − 22 − 33) 

The necessary conditions for the maximization problem are given by

L (x) =
µ
1

3
+  + 

¶
exp (−)− 2 −  = 0

L2 (x) =
µ
1

3

¶
exp (−2)− 1 + 2 − 2 = 0

L (x) =
µ
1

3
−  − 

¶
exp (−) + 1 −  = 0

0= 2 (2 − ) = 1 ( − 2)  1 ≥ 0 2 ≥ 0
 − 2≥ 0 2 −  ≥ 0

 0 1− 11 − 22 − 33 = 0

[2.2.1] 1  0 and 2  0

This implies that ∗ = ∗2 = ∗ . Thus, the optimal demand is given by

∗1 = ∗2 = ∗3 =
1

1 + 2 + 3
.
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We need to check the following parameter conditions for the optimal demand:µ
1

3
+  + 

¶
exp{−}µ

1

3
−  − 

¶
exp{−} µ

2

3
+  + 

¶
exp{−2} ( + 2) µ

2

3
−  − 

¶
exp{−2} (2 + ) 

Then we have the following inequality conditions for model parameters:

ln

µ




¶
 ln

Ã
1
3
+  + 

1
3
−  − 

!


ln

µ


2 + 

¶
 ln

Ã
1
3
+  + 

2
3
−  − 

!


ln

µ
 + 2



¶
 ln

Ã
2
3
+  + 

1
3
−  − 

!


[2.2.2] 1 = 0 and 2  0

This implies that ∗2 = ∗  ∗ . The optimal demand without the non-negativity condition is
given by

∗2= ∗ =
1

1 + 2 + 3
− 

 (1 + 2 + 3)

"
ln

µ
 + 2



¶
− ln

Ã
2
3
+  + 

1
3
−  − 

!#


∗ =
1

1 + 2 + 3
+

2 + 

 (1 + 2 + 3)

"
ln

µ
 + 2



¶
− ln

Ã
2
3
+  + 

1
3
−  − 

!#


The parameter condition for this solution is given by

ln

µ
 + 2



¶
 ln

Ã
2
3
+  + 

1
3
−  − 

!


ln

µ


2

¶
 ln

Ã
1
3
+  + 
1
3

!


If ∗2 = ∗ ≥ 0, then the above solution is the optimal one from the original maximization problem.

Otherwise, the optimal solution with the non-negativity condition is given by

∗2 = ∗ = 0 and ∗ =
1
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[2.2.3] 1  0 and 2 = 0

This implies that ∗ = ∗2  ∗ . The optimal demand without the non-negativity condition is
given by

∗ = ∗2 =
1

1 + 2 + 3
+



 (1 + 2 + 3)

"
ln

µ


2 + 

¶
− ln

Ã
1
3
+  + 

2
3
−  − 

!#


∗ =
1

1 + 2 + 3
− 2 + 

 (1 + 2 + 3)

"
ln

µ


2 + 

¶
− ln

Ã
1
3
+  + 

2
3
−  − 

!#


The parameter condition for this solution is given by

ln

µ


2 + 

¶
 ln

Ã
1
3
+  + 

2
3
−  − 

!


ln

µ
2



¶
 ln

Ã
1
3

1
3
−  − 

!


If ∗ ≥ 0, the optimal demand from the original problem will be the same as above. Otherwise,

the optimal demand with the non-negativity condition is

∗ = 0 and ∗2 = ∗ =
1

2 + 


[2.2.4] 1 = 0 and 2 = 0

This implies that ∗  ∗2  ∗ . The optimal solution without the non-negativity condition is
given by

∗ =
1

1 + 2 + 3
− (2 + )

 (1 + 2 + 3)

"
ln

µ


2

¶
− ln

Ã
1
3
+  + 
1
3

!#

− 

 (1 + 2 + 3)

"
ln

µ
2



¶
− ln

Ã
1
3

2
3
−  − 

!#


∗2=
1

1 + 2 + 3
+



 (1 + 2 + 3)

"
ln

µ


2

¶
− ln

Ã
1
3
+  + 
1
3

!#

− 

 (1 + 2 + 3)

"
ln

µ
2



¶
− ln

Ã
1
3

2
3
−  − 

!#


∗ =
1

1 + 2 + 3
+



 (1 + 2 + 3)

"
ln

µ


2

¶
− ln

Ã
1
3
+  + 
1
3

!#

+
 + 2

 (1 + 2 + 3)

"
ln

µ
2



¶
− ln

Ã
1
3

2
3
−  − 

!#
.

If the non-negativity condition for each asset is satisfied, then the above solution is the optimal

demand from the problem with the non-negativity condition of demands. Otherwise, we need to

further refine the problem by setting an asset violating the non-negativity condition to be zero.

There are two cases to consider: () ∗  ∗2  0, () 
∗
  0 and ∗2  0.
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() ∗  ∗2  0

The optimal solution is then given by

∗ = ∗2 = 0 and ∗ =
1




() ∗  0 and ∗2  0

By imposing that ∗ = 0, we have the new solution as

02=
1

2 + 
− 

 (2 + )

"
ln

µ
2



¶
− ln

Ã
1
3

2
3
−  − 

!#


0 =
1

2 + 
+

2

 (2 + )

"
ln

µ
2



¶
− ln

Ã
1
3

2
3
−  − 

!#


If 02 ≥ 0, then the optimal demand from the original problem will be

∗ = 0 
∗
2 = 02 and ∗ = 0 

If 02  0, then the optimal demand will be

∗ = ∗2 = 0 and ∗ =
1




[2.3] SP3:  ≤ 2
The Lagrangian function without the non-negativity condition is given by

L (x) =
µ
1

3
+  + 

¶
 () +

µ
1

3
− 

¶
 () +

µ
1

3
− 

¶
 (2)

+1 (2 − ) + 2 ( − ) +  (1− 11 − 22 − 33) 

The necessary conditions for the maximization problem are given by

L (x) =
µ
1

3
+  + 

¶
exp (−)− 2 −  = 0

L (x) =
µ
1

3
− 

¶
exp (−)− 1 + 2 −  = 0

L2 (x) =
µ
1

3
− 

¶
exp (−2) + 1 − 2 = 0

0=1 (2 − ) = 2 ( − )  1 2 ≥ 0,
 0 and 1− 11 − 22 − 33 = 0.
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[2.3.1] 1  0 and 2  0

This implies that ∗2 = ∗ = ∗ . The optimal solution from the original problem is then given

by

∗1 = ∗2 = ∗3 =
1

1 + 2 + 3
.

The parameter conditions for this solution are given by

ln

µ


2

¶
 ln

Ã
1
3
+  + 
1
3
− 

!


ln

µ


2 + 

¶
 ln

Ã
1
3
+  + 

2
3
−  − 

!


ln

µ
1 + 3

2

¶
 ln

Ã
2
3
+ 

1
3
− 

!


[2.3.2] 1 = 0 and 2  0

This implies that ∗ = ∗  ∗2. The optimal solution without the non-negativity condition is
given by

∗1= ∗3 =
1

1 + 2 + 3
− 2

 (1 + 2 + 3)

"
ln

µ
1 + 3

2

¶
− ln

Ã
2
3
+ 

1
3
− 

!#


∗2=
1

1 + 2 + 3
+

(1 + 3)

 (1 + 2 + 3)

"
ln

µ
1 + 3

2

¶
− ln

Ã
2
3
+ 

1
3
− 

!#


The parameter conditions for this solution are given by

ln

µ
1 + 3

2

¶
 ln

Ã
2
3
+ 

1
3
− 

!


ln

µ




¶
 ln

Ã
1
3
+  + 
1
3
− 

!


If ∗1 = ∗3 ≥ 0, then the optimal solution from the original problem is the same as above. Otherwise,
the optimal demand with the non-negativity condition is given by

∗1 = ∗3 = 0 and ∗2 =
1

2


[2.3.3] 1  0 and 2 = 0

This implies that ∗2 = ∗  ∗ . The optimal demand without the non-negativity condition is
given by

∗ =
1

1 + 2 + 3
− (2 + )

 (1 + 2 + 3)

"
ln

µ


2 + 

¶
− ln

Ã
1
3
+  + 

2
3
−  − 

!#


∗2= ∗ =
1

1 + 2 + 3
+



 (1 + 2 + 3)

"
ln

µ


2 + 

¶
− ln

Ã
1
3
+  + 

2
3
−  − 

!#
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The parameter condition for this solution is given by

ln

µ


2 + 

¶
 ln

Ã
1
3
+  + 

2
3
−  − 

!


ln

µ


2

¶
 ln

Ã
1
3
− 

1
3
− 

!


If ∗ ≥ 0, then the optimal demand from the original problem is the same as above. Otherwise,

the optimal demand with the non-negativity condition is given by

∗ = 0 and ∗2 = ∗ =
1

2 + 
.

[2.3.4] 1 = 0 and 2 = 0

The conditions imply that ∗2  ∗  ∗ . The optimal demand without the non-negativity
condition is given by

2=
1

1 + 2 + 3
+



 (1 + 2 + 3)

"
ln

µ


2

¶
− ln

Ã
1
3
+  + 
1
3
− 

!#

+


 (1 + 2 + 3)

"
ln

µ


2

¶
− ln

Ã
1
3
− 

1
3
− 

!#


 =
1

1 + 2 + 3
+



 (1 + 2 + 3)

"
ln

µ


2

¶
− ln

Ã
1
3
+  + 
1
3
− 

!#

− (2 + )

 (1 + 2 + 3)

"
ln

µ


2

¶
− ln

Ã
1
3
− 

1
3
− 

!#


=
1

1 + 2 + 3
− (2 + )

 (1 + 2 + 3)

"
ln

µ


2

¶
− ln

Ã
1
3
+  + 
1
3
− 

!#

+


 (1 + 2 + 3)

"
ln

µ


2

¶
− ln

Ã
1
3
− 

1
3
− 

!#


If the non-negativity condition for each asset is satisfied, then the above solution is the optimal

demand from the problem with the non-negativity condition of demands. Otherwise, we need to

further refine the problem by setting an asset violating the non-negativity condition to be zero.

There are two cases to consider: () ∗  ∗  0, () 
∗
  0 and ∗  0.

() ∗  ∗  0

Then the optimal solution from the original problem is given by

∗1 = ∗3 = 0 and ∗2 =
1

2
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() ∗  0 and ∗  0

By imposing that ∗ = 0, we have the following new solution as

02=
1

2 + 
+



 (2 + )

"
ln

µ


2

¶
− ln

Ã
1
3
− 

1
3
− 

!#


0 =
1

2 + 
− 2

 (2 + )

"
ln

µ


2

¶
− ln

Ã
1
3
− 

1
3
− 

!#


If 0 ≥ 0, then the optimal demand from the original problem is given by

∗ = 0 
∗
 = 0 and ∗2 = 02

If 0  0, then the optimal demand from the original problem is given by

∗1 = ∗3 = 0 and ∗2 =
1

2


[2.4] Non-uniqueness of the optimal demand

Finally we note that when   0 and/or   0, the optimal demand is not unique when

 = 0 for some  6= 0 = 1 2 3 because the generalized kinked utility function is not quasi-

convex everywhere. Nevertheless, the utility function is not quasi-convex in each sub-problem. The

above characterization of the optimal demands incorporates the cases of non-uniqueness.
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[3] Recursive Nonexpected Utility (RNEU)

Finally, we show that the generalized kinked specification can also be interpreted as reflecting

a special case of RNEU where there is an equal probability that 1 =
2
3
or 3 =

2
3
. Consider

the following two-stage recursive Rank-Dependent Utility (RDU) model. Given a fixed underlying

distribution π = (1 2 3), the first-stage rank-dependent expected utility  is given by

( 23 
1
3
0)(x) = [1− (1

3
)]max{(1) (2)}+ (1

3
)min{(1) (2)}

(0 13 
2
3)
(x) = [1− (1

3
)]max{(2) (3)}+ (1

3
)min{(2) (3)}

The second stage takes the rank-dependent expectation of the first-stage rank-dependent expected

utilities:

(x) = [1− (1
2
)]max

n
( 23 

1
3
0)(x) (0 13 

2
3)
(x)
o

+(1
2
)min

n
( 23 

1
3
0)(x) (0 13 

2
3)
(x)
o


and the decision weights can be expressed as follows:

1 = (1
3
)

2 − 1 = (1
2
)[1− (1

3
)]

3 = (1
2
)(1

3
)

4 − 3 = [1− (1
2
)](1

3
)

Now consider the three relevant cases:

I. 2 ≤ min

(x) = [1− (1
2
)]
©
[1− (1

3
)](max) + (1

3
)(2)

ª
+ (1

2
)
©
[1− (1

3
)](min) +(1

3
)(2)

ª


Rearranging,

(x) = 1(2) + (2 − 3)(min) + (1− 2)(max)

II. min ≤ 2 ≤ max

(x) = [1− (1
2
)]
©
[1− (1

3
)](max) + (1

3
)(2)

ª
+ (1

2
)
©
[1− (1

3
)](2) + (1

3
)(min)

ª


Rearranging,

(x) = 3(min) + (2 − 3)(2) + (1− 2)(max)

III. max ≤ 2

(x) = [1− (1
2
)]
©
[1− (1

3
)](2) + (1

3
)(max)

ª
+ (1

2
)
©
[1− (1

3
)](2) + (1

3
)(min)

ª


Rearranging,

(x) = 3(min) + (4 − 3)(max) + (1− 4)(2)
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