Appendix VIII
 The generalized kinked specification

We continue to assume that state 2 has an objectively known probability $\pi_{2}=\frac{1}{3}$, whereas states 1 and 3 occur with unknown probabilities π_{1} and π_{3}. The utility of a portfolio $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ takes the the following form:
I. $x_{2} \leq x_{\text {min }}$

$$
\alpha_{1}^{1} u\left(x_{2}\right)+\alpha_{2}^{1} u\left(x_{\min }\right)+\alpha_{3}^{1} u\left(x_{\max }\right)
$$

II. $x_{\text {min }} \leq x_{2} \leq x_{\text {max }}$

$$
\alpha_{1}^{2} u\left(x_{\min }\right)+\alpha_{2}^{2} u\left(x_{2}\right)+\alpha_{3}^{2} u\left(x_{\max }\right)
$$

III. $x_{\text {max }} \leq x_{2}$

$$
\alpha_{1}^{3} u\left(x_{\min }\right)+\alpha_{2}^{3} u\left(x_{\max }\right)+\alpha_{3}^{3} u\left(x_{2}\right)
$$

where $x_{\min }=\min \left\{x_{1}, x_{3}\right\}$ and $x_{\max }=\max \left\{x_{1}, x_{3}\right\}$. This formulation (equation 3) embeds the kinked specification (equation 1) as a special case. At the end of this note, we show that, through a suitable change of variables, the generalized kinked specification can also be interpreted as reflecting Recursive Nonexpected Utility (RNEU) where the ambiguity is modeled as an equal probability that $\pi_{1}=\frac{2}{3}$ or $\pi_{3}=\frac{2}{3}$. We begin by deriving the optimality conditions.

[1] Parameter restrictions

[1.1] Consistency

When $x_{2}=x_{\text {min }}$, consistency requires that

$$
\left(\alpha_{1}^{1}+\alpha_{2}^{1}\right) u\left(x_{\min }\right)+\alpha_{3}^{1} u\left(x_{\max }\right)=\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) u\left(x_{\min }\right)+\alpha_{3}^{2} u\left(x_{\max }\right) .
$$

Without loss of generality we can assume that

$$
\alpha_{1}^{1}+\alpha_{2}^{1}+\alpha_{3}^{1}=\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2},
$$

in which case the equation preceding the last implies that

$$
\left(\alpha_{1}^{1}+\alpha_{2}^{1}\right)\left[u\left(x_{\min }\right)-u\left(x_{\max }\right)\right]=\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)\left[u\left(x_{\min }\right)-u\left(x_{\max }\right)\right]
$$

or

$$
\alpha_{1}^{1}+\alpha_{2}^{1}=\alpha_{1}^{2}+\alpha_{2}^{2} .
$$

Similarly, when $x_{2}=x_{\text {max }}$ consistency requires that

$$
\alpha_{2}^{2}+\alpha_{3}^{2}=\alpha_{2}^{3}+\alpha_{3}^{3} .
$$

We further normalize the coefficients so that

$$
\alpha_{1}^{j}+\alpha_{2}^{j}+\alpha_{3}^{j}=1 \text { for all } j .
$$

This leads to the following:

$$
\alpha_{3}^{1}=\alpha_{3}^{2}, \alpha_{1}^{2}=\alpha_{1}^{3} .
$$

[1.2] Reparametrization

Let

$$
\begin{aligned}
& \alpha_{1}^{1}=\beta_{1}, \alpha_{1}^{1}+\alpha_{2}^{1}=\beta_{2}, \\
& \alpha_{1}^{2}=\beta_{3}, \alpha_{1}^{3}+\alpha_{2}^{3}=\beta_{4} .
\end{aligned}
$$

Using the consistency conditions, the original coefficients are reparametrized as follows:

$$
\begin{aligned}
& \alpha_{1}^{1}=\beta_{1}, \alpha_{2}^{1}=\beta_{2}-\beta_{1}, \alpha_{3}^{1}=1-\beta_{2}, \\
& \alpha_{1}^{2}=\beta_{3}, \alpha_{2}^{2}=\beta_{2}-\beta_{3}, \alpha_{3}^{2}=1-\beta_{2}, \\
& \alpha_{1}^{3}=\beta_{3}, \alpha_{2}^{3}=\beta_{4}-\beta_{3}, \alpha_{3}^{3}=1-\beta_{4} .
\end{aligned}
$$

Note that $\beta_{1} \leq \beta_{2} \leq 1, \beta_{3} \leq \beta_{2}$ and $\beta_{3} \leq \beta_{4}$. The utility of a portfolio $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ can be written with parameters $\beta_{1}, \ldots, \beta_{4}$:
I. $x_{2} \leq x_{\text {min }}$

$$
\beta_{1} u\left(x_{2}\right)+\left(\beta_{2}-\beta_{1}\right) u\left(x_{\min }\right)+\left(1-\beta_{2}\right) u\left(x_{\max }\right)
$$

II. $x_{\text {min }} \leq x_{2} \leq x_{\text {max }}$

$$
\beta_{3} u\left(x_{\min }\right)+\left(\beta_{2}-\beta_{3}\right) u\left(x_{2}\right)+\left(1-\beta_{2}\right) u\left(x_{\max }\right)
$$

III. $x_{\text {max }} \leq x_{2}$

$$
\beta_{3} u\left(x_{\min }\right)+\left(\beta_{4}-\beta_{3}\right) u\left(x_{\max }\right)+\left(1-\beta_{4}\right) u\left(x_{2}\right)
$$

We adopt a simpler three-parameter model, in which the parameter δ measures the ambiguity attitudes, the parameter γ measures pessimism/optimism, and ρ is the coefficient of absolute risk aversion. The mapping from the two parameters δ and γ to the four parameters $\beta_{1}, \ldots, \beta_{4}$ is given by the equations

$$
\begin{aligned}
& \beta_{1}=\frac{1}{3}+\gamma \\
& \beta_{2}=\frac{2}{3}+\gamma+\delta \\
& \beta_{3}=\frac{1}{3}+\gamma+\delta \\
& \beta_{4}=\frac{2}{3}+\gamma,
\end{aligned}
$$

with $-\frac{1}{3}<\delta, \gamma<\frac{1}{3}$ and $-\frac{1}{3}<\delta+\gamma<\frac{1}{3}$ so that the decision weight attached to each payoff in equation 3 is nonnegative.

[2] Optimal solutions

By the symmetry property between x_{1} and x_{3}, we know that $x_{1} \leq x_{3}$ if and only if $p_{1} \geq p_{3}$. We can use this fact to identify the price of $x_{\min }$ as $p_{\max }=\max \left\{p_{1}, p_{3}\right\}$. Similarly, we can identify the price of $x_{\text {max }}$ as $p_{\text {min }}=\min \left\{p_{1}, p_{3}\right\}$. For the rest of the note, we denote

$$
\begin{aligned}
& x_{i}=x_{\min } \text { and } x_{j} \\
& p_{i}=x_{\max }, \\
& \text { max }
\end{aligned} \text { and } p_{j}=p_{\min } .
$$

The maximization of the generalized kinked utility function can be broken down into three sub-problems:

- SP1: $x_{2} \leq x_{i}$

$$
\begin{gathered}
\max _{\mathbf{x}}\left(\frac{1}{3}+\gamma\right) u\left(x_{2}\right)+\left(\frac{1}{3}+\delta\right) u\left(x_{i}\right)+\left(\frac{1}{3}-\gamma-\delta\right) u\left(x_{j}\right) \\
\text { s.t. } \mathbf{p} \cdot \mathbf{x}=1, x_{j}-x_{i} \geq 0 \text { and } x_{i}-x_{2} \geq 0 .
\end{gathered}
$$

- SP2: $x_{i} \leq x_{2} \leq x_{j}$

$$
\begin{gathered}
\max _{\mathbf{x}}\left(\frac{1}{3}+\gamma+\delta\right) u\left(x_{i}\right)+\left(\frac{1}{3}\right) u\left(x_{2}\right)+\left(\frac{1}{3}-\gamma-\delta\right) u\left(x_{j}\right) \\
\text { s.t. } \mathbf{p} \cdot \mathbf{x}=1, x_{j}-x_{2} \geq 0 \text { and } x_{2}-x_{i} \geq 0
\end{gathered}
$$

- SP3: $x_{j} \leq x_{2}$

$$
\begin{gathered}
\max _{\mathbf{x}}\left(\frac{1}{3}+\gamma+\delta\right) u\left(x_{i}\right)+\left(\frac{1}{3}-\delta\right) u\left(x_{j}\right)+\left(\frac{1}{3}-\gamma\right) u\left(x_{2}\right) \\
\text { s.t. } \mathbf{p} \cdot \mathbf{x}=1, x_{j}-x_{i} \geq 0, \text { and } x_{2}-x_{j} \geq 0 .
\end{gathered}
$$

We adopt the CARA utility function $u(x)=-\frac{1}{\rho} e^{-\rho x}$. Instead of characterizing the exact conditions of prices and model parameters that tell which sub-problem the optimal solution of demands belongs to, we can adopt the following two-step algorithm computing a (globally) optimal demand:

Step 1 Given a price vector \mathbf{p} and parameter values (δ, γ, ρ), compute a (locally) optimal solution in each of the three sub-problems.

Step 2 Compare the utilities of locally optimal solutions of three sub-problems and choose one yielding the highest utility as a (globally) optimal solution of demand.

In what follows, we characterize optimal demand with conditions on parameters in each subproblem. Due to the fact that the CARA utility function generates a boundary solution for certain price vectors, we first set up the Lagrangian function for optimal solutions without the non-negativity condition of demand and impose that condition later, for computational ease.
[2.1] SP1: $x_{2} \leq x_{i}$
The Lagrangian function without the non-negativity condition of demand is given by

$$
\begin{aligned}
\mathcal{L}(\mathbf{x})= & \left(\frac{1}{3}+\gamma\right) u\left(x_{2}\right)+\left(\frac{1}{3}+\delta\right) u\left(x_{i}\right)+\left(\frac{1}{3}-\gamma-\delta\right) u\left(x_{j}\right) \\
& +\lambda_{1}\left(x_{i}-x_{2}\right)+\lambda_{2}\left(x_{j}-x_{i}\right)+\mu\left(1-p_{1} x_{1}-p_{2} x_{2}-p_{3} x_{3}\right) .
\end{aligned}
$$

The necessary conditions for the maximization problem are given by

$$
\begin{aligned}
\mathcal{L}_{2}(\mathbf{x}) & =\left(\frac{1}{3}+\gamma\right) \exp \left\{-\rho x_{2}\right\}-\lambda_{1}-\mu p_{2}=0, \\
\mathcal{L}_{i}(\mathbf{x}) & =\left(\frac{1}{3}+\delta\right) \exp \left\{-\rho x_{i}\right\}+\lambda_{1}-\lambda_{2}-\mu p_{i}=0, \\
\mathcal{L}_{j}(\mathbf{x}) & =\left(\frac{1}{3}-\gamma-\delta\right) \exp \left\{-\rho x_{j}\right\}+\lambda_{2}-\mu p_{j}=0, \\
\lambda_{1}\left(x_{i}-x_{2}\right) & =0=\lambda_{2}\left(x_{j}-x_{i}\right), \lambda_{1} \geq 0, \lambda_{2} \geq 0, \\
x_{i}-x_{2} & \geq 0, x_{j}-x_{i} \geq 0, \\
1 & =p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}, \mu>0 .
\end{aligned}
$$

[2.1.1] $\lambda_{1}>0$ and $\lambda_{2}>0$
This implies that $x_{i}^{*}=x_{2}^{*}=x_{j}^{*}$. Then the optimal demand is given by

$$
x_{1}^{*}=x_{2}^{*}=x_{3}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}} .
$$

For the parameter conditions leading to this solution, we need to check the following:

$$
\begin{aligned}
& \left(\frac{1}{3}+\gamma\right) \exp \left(-\rho x_{2}\right)>\mu p_{2} \\
& \left(\frac{1}{3}-\gamma-\delta\right) \exp \left(-\rho x_{j}\right)<\mu p_{j} \\
& \left(\frac{2}{3}+\gamma+\delta\right) \exp \left(-\rho x_{i}\right)>\mu\left(p_{2}+p_{i}\right), \\
& \quad\left(\frac{2}{3}-\gamma\right) \exp \left(-\rho x_{j}\right)<\mu\left(p_{1}+p_{3}\right),
\end{aligned}
$$

which yields the following inequality conditions under the optimal solution:

$$
\begin{aligned}
\ln \left(\frac{p_{2}}{p_{j}}\right) & <\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{1}{3}-\gamma-\delta}\right), \\
\ln \left(\frac{p_{2}}{p_{1}+p_{3}}\right) & <\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{2}{3}-\gamma}\right), \\
\ln \left(\frac{p_{2}+p_{i}}{p_{j}}\right) & <\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right) .
\end{aligned}
$$

[2.1.2] $\lambda_{1}=0$ and $\lambda_{2}>0$
This implies that $x_{1}^{*}=x_{3}^{*}>x_{2}^{*}$. The solution without non-negativity condition is given by

$$
\begin{aligned}
& x_{2}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}-\frac{\left(p_{1}+p_{3}\right)}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{1}+p_{3}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{2}{3}-\gamma}\right)\right], \\
& x_{1}^{*}=x_{3}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{2}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{1}+p_{3}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{2}{3}-\gamma}\right)\right] .
\end{aligned}
$$

The inequality conditions for this solution are given by

$$
\begin{aligned}
\ln \left(\frac{p_{2}}{p_{1}+p_{3}}\right) & >\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{2}{3}-\gamma}\right), \\
\ln \left(\frac{p_{i}}{p_{j}}\right) & <\ln \left(\frac{\frac{1}{3}+\delta}{\frac{1}{3}-\gamma-\delta}\right) .
\end{aligned}
$$

If $x_{2}^{*} \geq 0$, then the optimal demand is

$$
\begin{aligned}
& x_{2}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}-\frac{\left(p_{1}+p_{3}\right)}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{1}+p_{3}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{2}{3}-\gamma}\right)\right], \\
& x_{1}^{*}=x_{3}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{2}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{1}+p_{3}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{2}{3}-\gamma}\right)\right] .
\end{aligned}
$$

If $x_{2}^{*}<0$, then the optimal demand is given by

$$
x_{2}^{*}=0 \text { and } x_{1}^{*}=x_{3}^{*}=\frac{1}{p_{2}+p_{3}} .
$$

[2.1.3] $\lambda_{1}>0$ and $\lambda_{2}=0$

This implies that $x_{2}^{*}=x_{i}^{*}<x_{j}^{*}$. The solution without non-negativity condition is given by

$$
\begin{aligned}
& x_{2}^{*}=x_{i}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}-\frac{p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}+p_{i}}{p_{j}}\right)-\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right)\right], \\
& x_{j}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{2}+p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}+p_{i}}{p_{j}}\right)-\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right)\right] .
\end{aligned}
$$

The inequality condition for this solution is given by

$$
\begin{aligned}
\ln \left(\frac{p_{2}+p_{i}}{p_{j}}\right) & >\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right), \\
\ln \left(\frac{p_{2}}{p_{i}}\right) & <\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{1}{3}+\delta}\right) .
\end{aligned}
$$

If $x_{2}^{*}=x_{i}^{*} \geq 0$, the optimal demand will be the same as above:

$$
\begin{aligned}
& x_{2}^{*}=x_{i}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}-\frac{p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}+p_{i}}{p_{j}}\right)-\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right)\right], \\
& x_{j}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{2}+p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}+p_{i}}{p_{j}}\right)-\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right)\right] .
\end{aligned}
$$

If $x_{2}^{*}=x_{i}^{*}<0$, the optimal demand will be

$$
x_{2}^{*}=x_{i}^{*}=0 \text { and } x_{j}^{*}=\frac{1}{p_{j}} .
$$

[2.1.4] $\lambda_{1}=0$ and $\lambda_{2}=0$
This implies that $x_{j}^{*}>x_{i}^{*}>x_{2}^{*}$. The solution without non-negativity condition is given by

$$
\begin{aligned}
x_{2}^{*}= & \frac{1}{p_{1}+p_{2}+p_{3}}-\frac{p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{i}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{1}{3}+\delta}\right)\right] \\
& -\frac{p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{1}{3}-\gamma-\delta}\right)\right], \\
x_{i}^{*}= & \frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{2}+p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{i}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{1}{3}+\delta}\right)\right] \\
& -\frac{p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{1}{3}-\gamma-\delta}\right)\right], \\
x_{j}^{*}= & \frac{1}{p_{1}+p_{2}+p_{3}}-\frac{p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{i}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{1}{3}+\delta}\right)\right] \\
& +\frac{p_{2}+p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma}{\frac{1}{3}-\gamma-\delta}\right)\right] .
\end{aligned}
$$

If the non-negativity condition for each asset is satisfied, then the above solution is the optimal demand from the problem with the non-negativity condition of demands. Otherwise, we need to further refine the problem by setting an asset violating the non-negativity condition to be zero. There are two cases to consider: (i) $x_{2}^{*}<x_{i}^{*}<0,(i i) x_{2}^{*}<0$ and $x_{i}^{*}>0$.
(i) $x_{2}^{*}<x_{i}^{*}<0$

The optimal solution is then given by

$$
x_{j}^{*}=\frac{1}{p_{j}} \text { and } x_{2}^{*}=x_{i}^{*}=0 .
$$

(ii) $x_{2}^{*}<0$ and $x_{i}^{*}>0$

The solution to the problem by imposing that $x_{2}^{*}=0$ is given by

$$
\begin{aligned}
& x_{i}^{\prime}=\frac{1}{p_{1}+p_{3}}-\frac{p_{j}}{\rho\left(p_{1}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}+\delta}{\frac{1}{3}-\gamma-\delta}\right)\right], \\
& x_{j}^{\prime}=\frac{1}{p_{1}+p_{3}}+\frac{p_{i}}{\rho\left(p_{1}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}+\delta}{\frac{1}{3}-\gamma-\delta}\right)\right] .
\end{aligned}
$$

If $x_{i}^{\prime} \geq 0$, then the solution with $x_{2}^{*}=0$ is the optimal one in the original problem with the non-negativity condition of demands:

$$
x_{2}^{*}=0, x_{i}^{*}=x_{i}^{\prime} \text { and } x_{j}^{*}=x_{j}^{\prime} .
$$

If $x_{i}^{\prime}<0$, then the optimal solution is given by

$$
x_{2}^{*}=x_{i}^{*}=0 \text { and } x_{j}^{*}=\frac{1}{p_{j}} .
$$

[2.2] SP2: $x_{i} \leq x_{2} \leq x_{j}$
The Lagrangian function without the non-negativity condition of demand is given by

$$
\begin{aligned}
\mathcal{L}(\mathbf{x})= & \left(\frac{1}{3}+\gamma+\delta\right) u\left(x_{i}\right)+\left(\frac{1}{3}\right) u\left(x_{2}\right)+\left(\frac{1}{3}-\gamma-\delta\right) u\left(x_{j}\right) \\
& +\lambda_{1}\left(x_{j}-x_{2}\right)+\lambda_{2}\left(x_{2}-x_{i}\right)+\mu\left(1-p_{1} x_{1}-p_{2} x_{2}-p_{3} x_{3}\right) .
\end{aligned}
$$

The necessary conditions for the maximization problem are given by

$$
\begin{aligned}
\mathcal{L}_{i}(\mathbf{x}) & =\left(\frac{1}{3}+\gamma+\delta\right) \exp \left(-\rho x_{i}\right)-\lambda_{2}-\mu p_{i}=0 \\
\mathcal{L}_{2}(\mathbf{x}) & =\left(\frac{1}{3}\right) \exp \left(-\rho x_{2}\right)-\lambda_{1}+\lambda_{2}-\mu p_{2}=0, \\
\mathcal{L}_{j}(\mathbf{x}) & =\left(\frac{1}{3}-\gamma-\delta\right) \exp \left(-\rho x_{j}\right)+\lambda_{1}-\mu p_{j}=0, \\
0 & =\lambda_{2}\left(x_{2}-x_{i}\right)=\lambda_{1}\left(x_{j}-x_{2}\right), \lambda_{1} \geq 0, \lambda_{2} \geq 0 \\
x_{j}-x_{2} & \geq 0, x_{2}-x_{i} \geq 0 \\
\mu & >0,1-p_{1} x_{1}-p_{2} x_{2}-p_{3} x_{3}=0 .
\end{aligned}
$$

[2.2.1] $\lambda_{1}>0$ and $\lambda_{2}>0$
This implies that $x_{i}^{*}=x_{2}^{*}=x_{j}^{*}$. Thus, the optimal demand is given by

$$
x_{1}^{*}=x_{2}^{*}=x_{3}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}} .
$$

We need to check the following parameter conditions for the optimal demand:

$$
\begin{aligned}
& \left(\frac{1}{3}+\gamma+\delta\right) \exp \left\{-\rho x_{i}\right\}>\mu p_{i} \\
& \left(\frac{1}{3}-\gamma-\delta\right) \exp \left\{-\rho x_{j}\right\}<\mu p_{j} \\
& \left(\frac{2}{3}+\gamma+\delta\right) \exp \left\{-\rho x_{2}\right\}>\mu\left(p_{i}+p_{2}\right) \\
& \left(\frac{2}{3}-\gamma-\delta\right) \exp \left\{-\rho x_{2}\right\}<\mu\left(p_{2}+p_{j}\right)
\end{aligned}
$$

Then we have the following inequality conditions for model parameters:

$$
\begin{aligned}
& \ln \left(\frac{p_{i}}{p_{j}}\right)<\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right), \\
& \ln \left(\frac{p_{i}}{p_{2}+p_{j}}\right)<\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{2}{3}-\gamma-\delta}\right), \\
& \ln \left(\frac{p_{i}+p_{2}}{p_{j}}\right)<\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right) .
\end{aligned}
$$

[2.2.2] $\lambda_{1}=0$ and $\lambda_{2}>0$
This implies that $x_{2}^{*}=x_{i}^{*}<x_{j}^{*}$. The optimal demand without the non-negativity condition is given by

$$
\begin{aligned}
& x_{2}^{*}=x_{i}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}-\frac{p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}+p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right)\right], \\
& x_{j}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{2}+p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}+p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right)\right] .
\end{aligned}
$$

The parameter condition for this solution is given by

$$
\begin{aligned}
\ln \left(\frac{p_{i}+p_{2}}{p_{j}}\right) & >\ln \left(\frac{\frac{2}{3}+\gamma+\delta}{\frac{1}{3}-\gamma-\delta}\right), \\
\ln \left(\frac{p_{i}}{p_{2}}\right) & <\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}}\right) .
\end{aligned}
$$

If $x_{2}^{*}=x_{i}^{*} \geq 0$, then the above solution is the optimal one from the original maximization problem. Otherwise, the optimal solution with the non-negativity condition is given by

$$
x_{2}^{*}=x_{i}^{*}=0 \text { and } x_{j}^{*}=\frac{1}{p_{j}} .
$$

[2.2.3] $\lambda_{1}>0$ and $\lambda_{2}=0$
This implies that $x_{j}^{*}=x_{2}^{*}>x_{i}^{*}$. The optimal demand without the non-negativity condition is given by

$$
\begin{aligned}
& x_{j}^{*}=x_{2}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}+p_{j}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{2}{3}-\gamma-\delta}\right)\right], \\
& x_{i}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}-\frac{p_{2}+p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}+p_{j}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{2}{3}-\gamma-\delta}\right)\right] .
\end{aligned}
$$

The parameter condition for this solution is given by

$$
\begin{aligned}
\ln \left(\frac{p_{i}}{p_{2}+p_{j}}\right) & >\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{2}{3}-\gamma-\delta}\right), \\
\ln \left(\frac{p_{2}}{p_{j}}\right) & <\ln \left(\frac{\frac{1}{3}}{\frac{1}{3}-\gamma-\delta}\right) .
\end{aligned}
$$

If $x_{i}^{*} \geq 0$, the optimal demand from the original problem will be the same as above. Otherwise, the optimal demand with the non-negativity condition is

$$
x_{i}^{*}=0 \text { and } x_{2}^{*}=x_{j}^{*}=\frac{1}{p_{2}+p_{j}} .
$$

[2.2.4] $\lambda_{1}=0$ and $\lambda_{2}=0$

This implies that $x_{j}^{*}>x_{2}^{*}>x_{i}^{*}$. The optimal solution without the non-negativity condition is given by

$$
\begin{aligned}
x_{i}^{*}= & \frac{1}{p_{1}+p_{2}+p_{3}}-\frac{\left(p_{2}+p_{j}\right)}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}}\right)\right] \\
& -\frac{p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}}{\frac{2}{3}-\gamma-\delta}\right)\right], \\
x_{2}^{*}= & \frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}}\right)\right] \\
& -\frac{p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}}{\frac{2}{3}-\gamma-\delta}\right)\right], \\
x_{j}^{*}= & \frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}}\right)\right] \\
& +\frac{p_{i}+p_{2}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}}{\frac{2}{3}-\gamma-\delta}\right)\right] .
\end{aligned}
$$

If the non-negativity condition for each asset is satisfied, then the above solution is the optimal demand from the problem with the non-negativity condition of demands. Otherwise, we need to further refine the problem by setting an asset violating the non-negativity condition to be zero. There are two cases to consider: (i) $x_{i}^{*}<x_{2}^{*}<0,(i i) x_{i}^{*}<0$ and $x_{2}^{*}>0$.
(i) $x_{i}^{*}<x_{2}^{*}<0$

The optimal solution is then given by

$$
x_{i}^{*}=x_{2}^{*}=0 \text { and } x_{j}^{*}=\frac{1}{p_{j}} .
$$

(ii) $x_{i}^{*}<0$ and $x_{2}^{*}>0$

By imposing that $x_{i}^{*}=0$, we have the new solution as

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{1}{p_{2}+p_{j}}-\frac{p_{j}}{\rho\left(p_{2}+p_{j}\right)}\left[\ln \left(\frac{p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}}{\frac{2}{3}-\gamma-\delta}\right)\right], \\
& x_{j}^{\prime}=\frac{1}{p_{2}+p_{j}}+\frac{p_{2}}{\rho\left(p_{2}+p_{j}\right)}\left[\ln \left(\frac{p_{2}}{p_{j}}\right)-\ln \left(\frac{\frac{1}{3}}{\frac{2}{3}-\gamma-\delta}\right)\right] .
\end{aligned}
$$

If $x_{2}^{\prime} \geq 0$, then the optimal demand from the original problem will be

$$
x_{i}^{*}=0, x_{2}^{*}=x_{2}^{\prime} \text { and } x_{j}^{*}=x_{j}^{\prime} .
$$

If $x_{2}^{\prime}<0$, then the optimal demand will be

$$
x_{i}^{*}=x_{2}^{*}=0 \text { and } x_{j}^{*}=\frac{1}{p_{j}} .
$$

[2.3] SP3: $x_{j} \leq x_{2}$
The Lagrangian function without the non-negativity condition is given by

$$
\begin{aligned}
\mathcal{L}(\mathbf{x})= & \left(\frac{1}{3}+\gamma+\delta\right) u\left(x_{i}\right)+\left(\frac{1}{3}-\delta\right) u\left(x_{j}\right)+\left(\frac{1}{3}-\gamma\right) u\left(x_{2}\right) \\
& +\lambda_{1}\left(x_{2}-x_{j}\right)+\lambda_{2}\left(x_{j}-x_{i}\right)+\mu\left(1-p_{1} x_{1}-p_{2} x_{2}-p_{3} x_{3}\right) .
\end{aligned}
$$

The necessary conditions for the maximization problem are given by

$$
\begin{aligned}
\mathcal{L}_{i}(\mathbf{x}) & =\left(\frac{1}{3}+\gamma+\delta\right) \exp \left(-\rho x_{i}\right)-\lambda_{2}-\mu p_{i}=0 \\
\mathcal{L}_{j}(\mathbf{x}) & =\left(\frac{1}{3}-\delta\right) \exp \left(-\rho x_{j}\right)-\lambda_{1}+\lambda_{2}-\mu p_{j}=0 \\
\mathcal{L}_{2}(\mathbf{x}) & =\left(\frac{1}{3}-\gamma\right) \exp \left(-\rho x_{2}\right)+\lambda_{1}-\mu p_{2}=0 \\
0 & =\lambda_{1}\left(x_{2}-x_{j}\right)=\lambda_{2}\left(x_{j}-x_{i}\right), \lambda_{1}, \lambda_{2} \geq 0 \\
\mu & >0 \text { and } 1-p_{1} x_{1}-p_{2} x_{2}-p_{3} x_{3}=0
\end{aligned}
$$

[2.3.1] $\lambda_{1}>0$ and $\lambda_{2}>0$
This implies that $x_{2}^{*}=x_{j}^{*}=x_{i}^{*}$. The optimal solution from the original problem is then given by

$$
x_{1}^{*}=x_{2}^{*}=x_{3}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}} .
$$

The parameter conditions for this solution are given by

$$
\begin{aligned}
\ln \left(\frac{p_{i}}{p_{2}}\right) & <\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}-\gamma}\right), \\
\ln \left(\frac{p_{i}}{p_{2}+p_{j}}\right) & <\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{2}{3}-\gamma-\delta}\right), \\
\ln \left(\frac{p_{1}+p_{3}}{p_{2}}\right) & <\ln \left(\frac{\frac{2}{3}+\gamma}{\frac{1}{3}-\gamma}\right) .
\end{aligned}
$$

[2.3.2] $\lambda_{1}=0$ and $\lambda_{2}>0$

This implies that $x_{j}^{*}=x_{i}^{*}<x_{2}^{*}$. The optimal solution without the non-negativity condition is given by

$$
\begin{aligned}
& x_{1}^{*}=x_{3}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}-\frac{p_{2}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{1}+p_{3}}{p_{2}}\right)-\ln \left(\frac{\frac{2}{3}+\gamma}{\frac{1}{3}-\gamma}\right)\right], \\
& x_{2}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}+\frac{\left(p_{1}+p_{3}\right)}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{1}+p_{3}}{p_{2}}\right)-\ln \left(\frac{\frac{2}{3}+\gamma}{\frac{1}{3}-\gamma}\right)\right] .
\end{aligned}
$$

The parameter conditions for this solution are given by

$$
\begin{aligned}
\ln \left(\frac{p_{1}+p_{3}}{p_{2}}\right) & >\ln \left(\frac{\frac{2}{3}+\gamma}{\frac{1}{3}-\gamma}\right) \\
\ln \left(\frac{p_{i}}{p_{j}}\right) & <\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}-\delta}\right) .
\end{aligned}
$$

If $x_{1}^{*}=x_{3}^{*} \geq 0$, then the optimal solution from the original problem is the same as above. Otherwise, the optimal demand with the non-negativity condition is given by

$$
x_{1}^{*}=x_{3}^{*}=0 \text { and } x_{2}^{*}=\frac{1}{p_{2}} .
$$

[2.3.3] $\lambda_{1}>0$ and $\lambda_{2}=0$
This implies that $x_{2}^{*}=x_{j}^{*}>x_{i}^{*}$. The optimal demand without the non-negativity condition is given by

$$
\begin{aligned}
& x_{i}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}-\frac{\left(p_{2}+p_{j}\right)}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}+p_{j}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{2}{3}-\gamma-\delta}\right)\right] \\
& x_{2}^{*}=x_{j}^{*}=\frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}+p_{j}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{2}{3}-\gamma-\delta}\right)\right] .
\end{aligned}
$$

The parameter condition for this solution is given by

$$
\begin{aligned}
\ln \left(\frac{p_{i}}{p_{2}+p_{j}}\right) & >\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{2}{3}-\gamma-\delta}\right), \\
\ln \left(\frac{p_{j}}{p_{2}}\right) & <\ln \left(\frac{\frac{1}{3}-\delta}{\frac{1}{3}-\gamma}\right) .
\end{aligned}
$$

If $x_{i}^{*} \geq 0$, then the optimal demand from the original problem is the same as above. Otherwise, the optimal demand with the non-negativity condition is given by

$$
x_{i}^{*}=0 \text { and } x_{2}^{*}=x_{j}^{*}=\frac{1}{p_{2}+p_{j}} .
$$

[2.3.4] $\lambda_{1}=0$ and $\lambda_{2}=0$

The conditions imply that $x_{2}^{*}>x_{j}^{*}>x_{i}^{*}$. The optimal demand without the non-negativity condition is given by

$$
\begin{aligned}
x_{2}= & \frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}-\gamma}\right)\right] \\
& +\frac{p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{j}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}-\delta}{\frac{1}{3}-\gamma}\right)\right], \\
x_{j}= & \frac{1}{p_{1}+p_{2}+p_{3}}+\frac{p_{i}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}-\gamma}\right)\right] \\
& -\frac{\left(p_{2}+p_{i}\right)}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{j}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}-\delta}{\frac{1}{3}-\gamma}\right)\right], \\
x_{i}= & \frac{1}{p_{1}+p_{2}+p_{3}}-\frac{\left(p_{2}+p_{j}\right)}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{i}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}+\gamma+\delta}{\frac{1}{3}-\gamma}\right)\right] \\
& +\frac{p_{j}}{\rho\left(p_{1}+p_{2}+p_{3}\right)}\left[\ln \left(\frac{p_{j}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}-\delta}{\frac{1}{3}-\gamma}\right)\right] .
\end{aligned}
$$

If the non-negativity condition for each asset is satisfied, then the above solution is the optimal demand from the problem with the non-negativity condition of demands. Otherwise, we need to further refine the problem by setting an asset violating the non-negativity condition to be zero. There are two cases to consider: $(i) x_{i}^{*}<x_{j}^{*}<0,(i i) x_{i}^{*}<0$ and $x_{j}^{*}>0$.
(i) $x_{i}^{*}<x_{j}^{*}<0$

Then the optimal solution from the original problem is given by

$$
x_{1}^{*}=x_{3}^{*}=0 \text { and } x_{2}^{*}=\frac{1}{p_{2}} .
$$

(ii) $x_{i}^{*}<0$ and $x_{j}^{*}>0$

By imposing that $x_{i}^{*}=0$, we have the following new solution as

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{1}{p_{2}+p_{j}}+\frac{p_{j}}{\rho\left(p_{2}+p_{j}\right)}\left[\ln \left(\frac{p_{j}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}-\delta}{\frac{1}{3}-\gamma}\right)\right], \\
& x_{j}^{\prime}=\frac{1}{p_{2}+p_{j}}-\frac{p_{2}}{\rho\left(p_{2}+p_{j}\right)}\left[\ln \left(\frac{p_{j}}{p_{2}}\right)-\ln \left(\frac{\frac{1}{3}-\delta}{\frac{1}{3}-\gamma}\right)\right] .
\end{aligned}
$$

If $x_{j}^{\prime} \geq 0$, then the optimal demand from the original problem is given by

$$
x_{i}^{*}=0, x_{j}^{*}=x_{j}^{\prime} \text { and } x_{2}^{*}=x_{2}^{\prime} .
$$

If $x_{j}^{\prime}<0$, then the optimal demand from the original problem is given by

$$
x_{1}^{*}=x_{3}^{*}=0 \text { and } x_{2}^{*}=\frac{1}{p_{2}} .
$$

[2.4] Non-uniqueness of the optimal demand

Finally we note that when $\delta<0$ and/or $\gamma<0$, the optimal demand is not unique when $p_{k}=p_{k^{\prime}}$ for some $k \neq k^{\prime}=1,2,3$ because the generalized kinked utility function is not quasiconvex everywhere. Nevertheless, the utility function is not quasi-convex in each sub-problem. The above characterization of the optimal demands incorporates the cases of non-uniqueness.

[3] Recursive Nonexpected Utility (RNEU)

Finally, we show that the generalized kinked specification can also be interpreted as reflecting a special case of RNEU where there is an equal probability that $\pi_{1}=\frac{2}{3}$ or $\pi_{3}=\frac{2}{3}$. Consider the following two-stage recursive Rank-Dependent Utility (RDU) model. Given a fixed underlying distribution $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$, the first-stage rank-dependent expected utility $V_{\boldsymbol{\pi}}$ is given by

$$
\begin{aligned}
& V_{\left(\frac{2}{3}, \frac{1}{3}, 0\right)}(\mathbf{x})=\left[1-w\left(\frac{1}{3}\right)\right] \max \left\{u\left(x_{1}\right), u\left(x_{2}\right)\right\}+w\left(\frac{1}{3}\right) \min \left\{u\left(x_{1}\right), u\left(x_{2}\right)\right\}, \\
& V_{\left(0, \frac{1}{3}, \frac{2}{3}\right)}(\mathbf{x})=\left[1-w\left(\frac{1}{3}\right)\right] \max \left\{u\left(x_{2}\right), u\left(x_{3}\right)\right\}+w\left(\frac{1}{3}\right) \min \left\{u\left(x_{2}\right), u\left(x_{3}\right)\right\} .
\end{aligned}
$$

The second stage takes the rank-dependent expectation of the first-stage rank-dependent expected utilities:

$$
\begin{aligned}
U(\mathbf{x})= & {\left[1-w\left(\frac{1}{2}\right)\right] \max \left\{V_{\left(\frac{2}{3}, \frac{1}{3}, 0\right)}(\mathbf{x}), V_{\left(0, \frac{1}{3}, \frac{2}{3}\right)}(\mathbf{x})\right\} } \\
& +w\left(\frac{1}{2}\right) \min \left\{V_{\left(\frac{2}{3}, \frac{1}{3}, 0\right)}(\mathbf{x}), V_{\left(0, \frac{1}{3}, \frac{2}{3}\right)}(\mathbf{x})\right\},
\end{aligned}
$$

and the decision weights can be expressed as follows:

$$
\begin{aligned}
\beta_{1} & =w\left(\frac{1}{3}\right), \\
\beta_{2}-\beta_{1} & =w\left(\frac{1}{2}\right)\left[1-w\left(\frac{1}{3}\right)\right], \\
\beta_{3} & =w\left(\frac{1}{2}\right) w\left(\frac{1}{3}\right), \\
\beta_{4}-\beta_{3} & =\left[1-w\left(\frac{1}{2}\right)\right] w\left(\frac{1}{3}\right) .
\end{aligned}
$$

Now consider the three relevant cases:
I. $x_{2} \leq x_{\text {min }}$

$$
\begin{aligned}
U(\mathbf{x}) & =\left[1-w\left(\frac{1}{2}\right)\right]\left\{\left[1-w\left(\frac{1}{3}\right)\right] u\left(x_{\max }\right)+w\left(\frac{1}{3}\right) u\left(x_{2}\right)\right\} \\
& +w\left(\frac{1}{2}\right)\left\{\left[1-w\left(\frac{1}{3}\right)\right] u\left(x_{\min }\right)+w\left(\frac{1}{3}\right) u\left(x_{2}\right)\right\} .
\end{aligned}
$$

Rearranging,

$$
U(\mathbf{x})=\beta_{1} u\left(x_{2}\right)+\left(\beta_{2}-\beta_{3}\right) u\left(x_{\min }\right)+\left(1-\beta_{2}\right) u\left(x_{\max }\right) .
$$

II. $x_{\text {min }} \leq x_{2} \leq x_{\text {max }}$

$$
\begin{aligned}
U(\mathbf{x}) & =\left[1-w\left(\frac{1}{2}\right)\right]\left\{\left[1-w\left(\frac{1}{3}\right)\right] u\left(x_{\max }\right)+w\left(\frac{1}{3}\right) u\left(x_{2}\right)\right\} \\
& +w\left(\frac{1}{2}\right)\left\{\left[1-w\left(\frac{1}{3}\right)\right] u\left(x_{2}\right)+w\left(\frac{1}{3}\right) u\left(x_{\min }\right)\right\} .
\end{aligned}
$$

Rearranging,

$$
U(\mathbf{x})=\beta_{3} u\left(x_{\min }\right)+\left(\beta_{2}-\beta_{3}\right) u\left(x_{2}\right)+\left(1-\beta_{2}\right) u\left(x_{\max }\right) .
$$

III. $x_{\text {max }} \leq x_{2}$

$$
\begin{aligned}
U(\mathbf{x}) & =\left[1-w\left(\frac{1}{2}\right)\right]\left\{\left[1-w\left(\frac{1}{3}\right)\right] u\left(x_{2}\right)+w\left(\frac{1}{3}\right) u\left(x_{\max }\right)\right\} \\
& +w\left(\frac{1}{2}\right)\left\{\left[1-w\left(\frac{1}{3}\right)\right] u\left(x_{2}\right)+w\left(\frac{1}{3}\right) u\left(x_{\min }\right)\right\} .
\end{aligned}
$$

Rearranging,

$$
U(\mathbf{x})=\beta_{3} u\left(x_{\min }\right)+\left(\beta_{4}-\beta_{3}\right) u\left(x_{\max }\right)+\left(1-\beta_{4}\right) u\left(x_{2}\right) .
$$

