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Abstract

We consider the problem of aggregating menus. Each agent submits a menu of

options, which the social rule aggregates into a single menu. First, we study a general

environment where menus are arbitrary subsets, and characterize a union rule which

takes the union of individual menus. Second, we study a probabilistic environment

where menus are closed convex subsets of lotteries over options, and characterize a rule

which takes a convex combination over individual menus with fixed weights.

1 Introduction

The basic problem of deciding a common set of options for a number of agents arises fre-

quently. Consider the following:

• Two friends want to meet at a restaurant for dinner. One is on a diet and hopes to

avoid unhealthy options, while the other has just received a promotion and hopes to

celebrate by indulging in a rich meal.

• A government designs a mandatory pension system, to be funded through implicit

forced savings taxed on current income. Some residents prefer the flexibility for current
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consumption afforded with smaller rates of forced savings. Others prefer larger rates

to moderate their temptation to overconsume in the present. A single common system

must be incorporated into the tax code.

• Many laws are basic restrictions on behavior applied consistently to everyone. Citizens

disagree on limits of abortion rights, the right to free speech, and so on, but a single

set of restrictions must be reached.

• Nations often meet to ratify treaties to limit their behavior. For example, the Geneva

Conventions dictate rules of engagement during war. Some countries prefer to restrict

torture of prisoners and attacks on civilians, while others would like more liberal rules

allowing these practices.

Kreps (1979) introduced an axiomatic theory of decision making for a single agent over

menus, which is extended by Dekel, Lipman, and Rustichini (2001) and Gul and Pesendorfer

(2001). These theories incorporate a particular agent’s desire for larger menus to provide

flexibility or for smaller menus to provide commitment. A common theme in the prior

examples is a social tension between flexibility and commitment across many agents. We

study rules for resolving this tension.

In particular, we focus attention to a simple setting where each agent proposes or sub-

mits a menu, and the social rule aggregates these submissions into a common menu. An

alternative approach might aggregate entire preferences over menus. For example, a variant

of the classical Harsanyi (1955) Aggregation Theorem, e.g. De Meyer and Mongin (1995),

implies that a Paretian, independent, and monotone social aggregation of independent and

monotone preferences over sets of lotteries can be represented with a convex combination

of the subjective state spaces and measures which represent individuals’ preferences. One

difficulty with implementing this rule is obtaining each individual’s preference over menus.

The main substantive motivation for the current setting is its relative simplicity. Each agent

submits a single menu, rather than a rank order of the entire power set of menus.

In this paper, we consider two structural environments. First is the general environment

where no structure is imposed on the space of outcomes, which is analogous to Kreps (1979).

Here, we characterize a rule which returns the union of the individually proposed menus.

Second is a probabilistic environment where the outcome space is the space of lotteries over

deterministic outcomes, which is analogous to Dekel, Lipman, and Rustichini (2001) and

Gul and Pesendorfer (2001) and provides some useful linear structure. Here, we characterize

a rule which returns a convex combination with fixed weights over the individually proposed

menus.
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Another interpretation of the environment is a resolution of competing opinions or con-

jectures. The general model can be viewed in terms of a principal asking various advisors

about what they view as the possible states of the world in a setting with unforeseen contin-

gencies, while the probabilistic model corresponds to asking advisors for their sets of beliefs

over states in a setting with ambiguity regarding probabilities. A corollary contribution of

the paper is to provide characterizations of different possibility and belief aggregators in

these settings.

We note that the general model considered here is formally similar to some other aggre-

gation problems. Under approval voting (Brams and Fishburn 1978, Weber 1995), voters

submit ballots of acceptable candidates from each voter and outputs as winners the candi-

dates which appear on the most ballots. Aside from the obvious difference in interpretation,

the resulting representation is also distinct.1 The union rule considered in this paper would

violate the Consistency condition required to characterize approval voting across populations

(Fishburn 1978), while approval voting would violate the Monotonicity condition used here.

Finally, there is a small literature on axiomatic group definition, where each agent submits

a subset of agents and the aggregation rule outputs a group of agents (Kasher and Rubinstein

1997, Schmeidler 2003).2 The set of outcomes is the power set of agents, so corresponds

to a special case of our environment. Many of the axioms in this literature invoke this

connection, e.g. each agent can decide on her own identity, and are not meaningful in our

general environment. In this special environment, our proposed union rule for the finite case

can be interpreted is as an extremely permissive aggregation (any agent can approve i as

a member of the group), or dually as an extremely restrictive aggregation (interpreting the

submitted sets complementarily, any agent can veto i as a member of the group).

2 General model

We begin by describing the general model. Let N = {1, . . . , n} denote a finite set of agents

and X denote an arbitrary set of alternatives. In general X ⊆ 2X denotes some universe of

admissible subsets or menus. In this section, we will take X = 2X \ {∅} to be the family of

all nonempty subsets of X. A rule is a function F : XN → X assigning a menu to every

profile of menus. One such rule is the union rule which maps each profile to the union

of its components, F (A1, . . . , An) =
⋃
i∈N Ai. This is a liberal rule in the following sense:

if any agent desires the freedom to choose a particular option, the social menu will include

1Moreover, approval voting is generally characterized with conditions applied across populations, while
we focus on a single population setting.

2We thank Eddie Dekel for mentioning this work to us.
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that option. Implicitly, any agent has veto power over the exclusion of an option; in the

deciding limits on behavior, consensus is required before a law or treaty is ratified which

makes some option unavailable to the group. In the corollary interpretation of the model as

the contingencies foreseen by different agents, the rule has the straightforward and sensible

implication that the contingencies foreseen to the group are those which are foreseen by any

individual member.

We now consider some restrictions on rules.

Axiom 1 (Unanimity). For all A ∈ X , F (A, . . . , A) = A.

Unanimity is a minimal efficiency criterion. If every individual agrees on the same menu,

then that menu should be the social outcome.

Axiom 2 (Anonymity). For any bijection τ : N → N and profile (A1, . . . , An) ∈ XN ,

F (A1, . . . , An) = F
(
Aτ(1), . . . , Aτ(n)

)
.

This classical condition, which makes the identities of the agents irrelevant, captures

some notion of equity. As the proofs will make clear, it is also very technically powerful in

this setting.

Axiom 3 (Monotonicity). If Ai ⊆ Bi for all i ∈ N , then F (A) ⊆ F (B).

Monotonicity asserts that if every agent submits a larger menu with more flexibility (or

a smaller one with more commitment), then the social outcome should also allow for more

flexibility (or impose more commitment).

Axiom 4 (Disjoint Additivity). If Ai∩Bi = ∅ for all i ∈ N , then F (Ai∪Bi, . . . , An∪Bn) =

F (A1, . . . , Bn) ∪ F (B1, . . . , Bn).

We can also invoke the following stronger but still necessary condition, applied at the

level of the individual submission rather than the entire profile: if Ai ∩ Bi = ∅ for some

i ∈ N , then

F (Ai ∪Bi, (Cj)j 6=i) = F (Ai, (Cj)j 6=i) ∪ F (Bi, (Cj)j 6=i).

Thusly stated, Disjoint Additivity resembles a path independence or separability condition.

The social menu induced by a profile of individual menus can be decomposed and analyzed

through disjoint individual submenus. One way to understand this condition is to suppose

we split the domain X = X ′∪X ′′, with X ′ and X ′′ disjoint, then ask some agent i to submit

a menu Ai ⊆ X ′ and Bi ⊆ X ′′ from each subdomain. For example, these menus might

respectively be the beef and chicken dishes she would like to have available at a restaurant.

If she selects a conditional menu Ai ⊆ X ′ of beef dishes and a conditional menu Bi ⊆ X ′′ of
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chicken dishes, then the social menu that would have been offered if she had submitted the

union Ai ∪Bi of beef and chicken dishes is the combination of social menus that are offered

based on her conditional menus, fixing all other agents’ submissions. Of course, someone

who submits Ai from X ′ and Bi from X ′′ might submit a separate menu not equal to Ai∪Bi

from the grand domain X: for example, she finds some option a ∈ Ai tempting against Bi

in a way that it is not against other choices in Ai. The axiom asserts only that if she were

to submit the union Ai ∪ Bi from the grand domain, then the resulting social menu would

take the union of the conditional social menus.

As with path independence, any rule satisfying Disjoint Additivity enjoys a form of infor-

mational parsimony, since the aggregation can be separated into smaller domains. However,

this separability, in conjunction with the three prior axioms, is satisfied only by the union

rule.

Theorem 1. Suppose |X| ≥ |N |. A rule F : XN → X satisfies Unanimity, Anonymity,

Monotonicity, and Disjoint Additivity if and only if F (A1, . . . , An) =
⋃
i∈N Ai.

Proof. We omit the straightforward verification of necessity, moving directly to sufficiency.

We first prove the claim for profiles of singletons. Let xi ∈ X for each i ∈ N and A =⋃
i∈N{xi}. Letm = |A| denote the number of distinct elements in the profile ({x1}, . . . , {xn}).

We need to show F ({x1}, . . . , {xn}) = A. Since there are more objects than agents,

|X| ≥ |N |, there exists some residual set B = {b1, . . . , bn−m} ⊆ X \ {x1, . . . , xm} such

that |B| = n−m.

One set containment, F ({x1}, . . . , {xn}) ⊆ F (A, . . . , A) ⊆ A, follows from Monotonicity

and Unanimity. This also implies that F ({x1}, . . . , {xn}) is disjoint from B. So, to prove

that A ⊆ F ({x}, . . . , {xn}), it suffices to show that A ∪B ⊆ F ({x1}, . . . , {xn}) ∪B.

To this end, we may assume, by reordering and appealing to Anonymity, that the first

m components of the profile are distinct: xi 6= xj for all i, j ≤ m. Consider the profile

({y1}, . . . , {yn}) = ({x1}, {x2}, . . . , {xm}, {b1}, {b2}, . . . , {bn−m}).

By construction, yi 6= yj whenever i 6= j and {y1, . . . , yn} = A ∪ B. Let τ i denote the i-th
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cyclic permutation on N .3

A ∪B = F (A ∪B, . . . , A ∪B), by Unanimity

= F

(⋃
i∈N

{
yτ i(1)

}
, . . . ,

⋃
i∈N

{
yτ i(n)

})
=
⋃
i∈N

F
(
{yτ i(1)}, . . . , {yτ i(n)}

)
, by n applications of Disjoint Additivity

= F ({y1}, . . . , {yn}), by Anonymity

⊆ F ({x1} ∪B, . . . , {xn} ∪B), by Monotonicity

= F ({x1}, . . . , {xn}) ∪ F (B, . . . , B), by Disjoint Additivity

= F ({x1}, . . . , {xn}) ∪B, by Unanimity.

Moving to the general case, take an arbitrary profile (A1, . . . , An). By Monotonicity

and Unanimity, F (A1, . . . , An) ⊆ F
(⋃

i∈N Ai, . . . ,
⋃
i∈N Ai

)
=
⋃
i∈N Ai. For the other direc-

tion, suppose x ∈
⋃
i∈N Ai. Then x ∈ Ai for some Ai, so there exists a selection (x1, . . . , xn) ∈∏

i∈N Ai such that x ∈ {x1, . . . , xn}. But x ∈ {x1, . . . , xn} = F ({x1}, . . . , {xn}) ⊆ F (A1, . . . , An),

by the previous step and Monotonicity. So, we have
⋃
i∈N Ai ⊆ F (A1, . . . , An).

The simple verification of the logical independence of the axioms is omitted.

The hypothesis that the number of objects is at least as large as the number of agents is

indispensable, as demonstrated by the following example.

Example 1. Let X = {x, y} and N = {1, 2, 3}. If there exists some i ∈ N such that

Ai = {x, y}, let F (A1, A2, A3) = {x, y}. There are four remaining profiles to consider, up to

permutation of agents:

F ({x}, {x}, {x}) = {x}

F ({x}, {x}, {y}) = {x}

F ({x}, {y}, {y}) = {y}

F ({y}, {y}, {y}) = {y}.

This example satisfies Unanimity, Anonymity, Monotonicity, and Disjoint Additivity.

The theorem can also be proved with a stronger Additivity condition whose hypothesis

does not require that announced menus be disjoint, in which case the cardinality hypoth-

3So τ i(k) = [k + i] mod n.
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esis is no longer required. This strengthened axiom implies both Disjoint Additivity and

Monotonicity.

3 Probabilistic model

In this section, suppose X is a finite set. Let ∆X denote the set of lotteries over X. We now

take X = K(∆X), the nonempty, closed, and convex subsets of ∆X.4 Define the convex

combination of two sets A,B ∈ K with weight α ∈ [0, 1] by

αA+ (1− α)B = {αp+ (1− α)q : p ∈ A, q ∈ B}.

The additional linear structure here affords new kinds of aggregation rules. For example,

the weighting rule takes a convex combination, with fixed weights across agents, of the

individual menus: F (A1, . . . , An) =
∑

i∈N µiAi, for some µ ∈ ∆N .

The linearized domain and the accompanying weighting rule exploit objective random-

ization. This randomization is similar to how a random allocation rule is used to improve ex

ante equity in the assignment of indivisible objects: “Using a lottery is one of the oldest tricks

(going further back than the Bible . . . ) to restore fairness in such problems” (Bogomolnaia

and Moulin 2001, p. 295). Moreover, in some settings this provides an accurate description

of the options: financial assets can be summarized as induced distributions over returns;

restaurants with changing menus or stores with uncertain inventories can be summarized as

probabilities of different entrees or items being available. In other settings, the linearization

can be interpreted as proportions of options, without appeal to randomization: the mutual

funds available in a retirement plan can be considered as mixtures of specific assets.

This linearization also provides useful theoretical leverage. Beside the standard point

regarding ex ante equity, randomization has a particular appeal in the context of flexibil-

ity and self-control in maintaining resoluteness. If each agent submits a single point, the

social outcome arguably should reflect this strong desire for commitment. However, it is

unclear how to sensibly select a particular singleton in a setting without randomization. In

fact, Theorem 1 highlights a potential tension between separability and resoluteness. With

randomization, the suggested weighting rules resolutely map any profile of singletons to a

singleton; to do so, it requires an alternate form of separability, to be defined shortly, which

involves the linearization of the domain.

This domain also has special appeal when interpreting the model as aggregating opinions

4We could also allow for sets which are not convex by assuming that F (A1, . . . , An) =
F (conv(A1), . . . , conv(An), where conv(Ai) denotes the convex hull of Ai.
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regarding uncertainty. For example, in the maxmin expected utility model, uncertainty is

captured as a set of prior beliefs. If consulting different experts with subjective opinions

regarding this set, their advice can be summarized as sets of probabilities.

The weighting rule fails the Disjoint Additivity condition of the union rule, but satisfies

the following condition, which invokes the linear structure of the space of lotteries.

Axiom 5 (Mixture Linearity). For all (A1, . . . , An), (B1, . . . , Bn) ∈ XN and α ∈ [0, 1],

F (αA1 + (1− α)B1, . . . , αAn + (1− α)Bn) = αF (A1, . . . , An) + (1− α)F (B1, . . . , Bn).

This axiom is an analog of independence for individual choice over menus of lotteries,

as used Dekel, Lipman, and Rustichini (2001), applied to our social choice setting. Its nor-

mative motivation is also analogous, in terms of the timing of resolution of uncertainty. In

this interpretation, the combination (αA1 + (1− α)B1, . . . , αAn + (1− α)Bn) is viewed as a

randomization, say generated by an α-weighted coin, between the profiles (A1, . . . , An) and

(B1, . . . , Bn). Then the social menu over these randomized submissions is the randomization

of the social menu induced by the submissions (A1, . . . An) and (B1, . . . , Bn). So, a Mixture

Linear rule is invariant to whether the coin is flipped before or after the point of aggrega-

tion. If indifference to the timing of the resolution of uncertainty is taken as normatively

compelling, this assumption simply invokes this indifference in the aggregate.

The justification for Mixture Linearity invokes a form of independence over future op-

tions. Some recent work, e.g. Epstein, Marinacci, and Seo (2005), relaxes this assumption

regarding preferences over menus. Nonetheless, the descriptive concerns which motivate

these generalizations seem orthogonal to the aggregation problem of this paper, especially

considering the normative motivation for Mixture Linearity here.

Replacing Disjoint Additivity with Mixture Linearity, we characterize the weighting rule

with a uniform weighting over agents.

Theorem 2. A rule F : XN → X satisfies Unanimity, Anonymity, and Mixture Linearity

if and only if F (A1, . . . , An) =
∑

i∈N
1
n
Ai.

Proof. Let (A1, . . . , An) ∈ XN . Recall τ i : N → N denoted the i-th cyclic permutation on
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N . Then:

F (A1, . . . , An) = F (Aτ i(1), . . . , Aτ i(n)), by Anonymity

=
∑
i∈N

1

n
F (Aτ i(1), . . . , Aτ i(n))

= F

(
1

n

∑
i∈N

Aτ i(1), . . . ,
1

n

∑
i∈N

Aτ i(n)

)
, by Mixture Linearity

= F

(
1

n

∑
i∈N

Ai, . . . ,
1

n

∑
i∈N

Ai

)

=
1

n

∑
i∈N

Ai, by Unanimity.

Again, it is simple to verify that the three axioms are independent. The characterization

makes no use of the Monotonicity condition which concerns commitment versus flexibility,

and as such requires no appeal to interpretations requiring Monotonicity.

If the Anonymity axiom is dispensed, the weighting becomes arbitrary over agents. This is

not a simple corollary of the Mixture Space Theorem or the standard Harsanyi Aggregation

Theorem. In particular, the space of convex sets is somewhat intractable, and the proof

moves the analysis to the space of support functions, following Dekel, Lipman, and Rustichini

(2001). The consequent result can be interpreted as a version of the Aggregation Theorem

over the infinite-dimensional space of sets.

Theorem 3. A rule F : XN → X satisfies Unanimity, Monotonicity, and Mixture Linearity

if and only if there exists µ ∈ ∆N such that F (A1, . . . , An) =
∑

i∈N µiAi.

Proof. We omit the straightforward verification of necessity and proceed to show sufficiency.

Let m = |X| and D = {x ∈ Rm : ‖x‖ = 1 and
∑

i xi = 0}. For any A ∈ X , define the

support function σA : D → R of a set A ∈ X by σA(s) = maxa∈A a · s. Let X ∗ = {σA : A ∈
X} ⊆ RD denote the family of all support functions induced by some set in X . Define the

dual function F ∗ : [X ∗]N → X ∗ by

F ∗(σA1 , . . . , σAn) = σF (A1,...,An).

It suffices to prove that F ∗(σA1 , . . . , σAn) =
∑

i∈N µiσAi
.
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The dual function inherits mixture linearity:

F ∗ (ασA1 + (1− α)σB1 , . . . , ασAn + (1− α)σBn)

= F ∗
(
σαA1+(1−α)B1 , . . . , σαAn+(1−α)Bn

)
= σF (αA1+(1−α)B1,...,αAn+(1−α)Bn)

= σαF (A1,...,An)+(1−α)F (B1,...,Bn)

= ασF (A1,...,An) + (1− α)σF (B1,...,Bn)

= αF ∗ (σA1 , . . . , σAn) + (1− α)F ∗ (σB1 , . . . , σBn) .

The support function also carries a form of monotonicity to the dual, since σA ≤ σA′ if and

only if A ⊆ A′. So, if σAi
≤ σBi

, i.e. Ai ⊆ Bi, for all i ∈ N , then:

F ∗(σA1 , . . . , σAn) = σF (A1,...,An) ≤ σF (B1,...,Bn) = F ∗(σB1 , . . . , σBn).

Now, for any s ∈ D, consider the real-valued function F ∗s : [X ∗]N → R defined by

F ∗s (σA1 , . . . , σAn) = [F ∗(σA1 , . . . , σAn)](s).

This function is also mixture linear and monotonic. Note that

F ∗s (0, . . . , 0) = 0.

To see this, let `0 =
(

1
m
, . . . , 1

m

)
denote the uniform lottery over X and observe:

F ∗(0, . . . , 0) = F ∗
(
σ{`0}, . . . , σ{`0}

)
= σ{`0} = 0.

The argument for Theorems 1 and 2 of Dekel, Lipman, Rustichini, and Sarver (2007)

can be replicated, with some obvious adjustments to account for the product space of the

domain, to produce an increasing continuous linear extension Ws : [C(D)]N → R of F ∗s to

[C(D)]N , the space of all profiles of continuous real-valued functions on D. Therefore, by

the Riesz Representation Theorem, there exists a profile (µs1, . . . , µ
s
n) of finite nonnegative

measures on D such that

F ∗s (σA1 , . . . , σAn) = Ws(σA1 , . . . , σAn) =
∑
i∈N

∫
D

σAi
(t) dµsi (t).

Moreover, the measure µsi is concentrated on {s}. To see this, recall that `0 is the uniform

distribution and consider the closed convex set A = {` ∈ ∆X : ` · s ≤ 0}. Let t ∈ D \ {s}.
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Note that there exists some ` ∈ A for which ` · t > 0, so that σA (t) > 0.

Then, by Unanimity:

σA(s) = σ`0(s)

F ∗s (σA, . . . , σA) = F ∗s (σ{`0}, . . . , σ{`0})∑
i∈N

∫
D

σA(t) dµsi (t) =
∑
i∈N

∫
D

σ{`0}(t) dµ
s
i (t)

∑
i∈N

[
σA(t)µsi ({s}) +

∫
D\{s}

σA(s) dµsi (t)

]
=
∑
i∈N

[
σ{`0}(s)µ

s
i ({s}) +

∫
D\{s}

σ{`0}(t) dµ
s
i (t)

]
∑
i∈N

∫
D\{s}

σA(t) dµsi (t) =
∑
i∈N

∫
D\{s}

σ{`0}(t) dµ
s
i (t).

But, since σA > σ{`0} on D \ {s} and every µsi is nonnegative, this suffices to show µsi (D \
{s}) = 0, as the right hand side of the final equality is zero. So, let µsi = µsi ({s}) and note

that Unanimity implies
∑

i∈N µ
s
i = 1.

We lastly show that µs = µt for all s, t ∈ D. As a first step, observe that if ({x1}, . . . , {xn})
is a profile of singletons, then F ({x1}, . . . , {xn}) is a singleton. To see this, note that by

Mixture Linearity and Unanimity,

∑
i∈N

1

n
F ({xσi(1)}, . . . , {xσi(n)}) =

{∑
i∈N

1

n
xσi(n)

}
.

Since the right hand side is a singleton, each component of the sum on the left hand side

must also be a singleton.

To establish that µs = µt for all s, t, we will consider two cases, the case in which s = −t
and the case in which s 6= −t. We will show that for any i ∈ N , µis = µit.

Recall that `0 is the uniform distribution over X. Let i ∈ N . Let (A1, . . . , An) be a profile

of singletons such that for all j 6= i, Aj = {`0}, and Ai is any singleton. We claim that there

exists some µi ∈ [0, 1] such that F (A1, . . . , An) = µiAi + (1 − µi){`0}. But this follows

trivially by Unanimity, Monotonicity, and the prior observation that singleton profiles map

to singletons.

Now, suppose that s = −t. Let us choose ε small enough so that `0 +εs ∈ ∆X. Consider

the profile where Ai = {`0 + εs} and for all j 6= i, Aj = {`0}. Then F (A1, . . . , An) =

µi{`0 + εs} + (1 − µi){`0} for some µi. In particular, as σ`0(s
′) = 0, we may conclude that

F ∗s (σA1 , . . . , σAn) = µiε and F ∗t (σA1 , . . . , σAn) = −µiε. Consequently, F ∗s (σA1 , . . . , σAn) =
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−F ∗t (σA1 , . . . , σAn). Now,

µsi =
µsiε

ε
=
µsiσAi

(s) +
∑

j 6=i µ
s
jσAj

(s)

ε
=
F ∗s (σA1 , . . . , σAn)

ε

and

µti =
µti(−ε)
−ε

=
µtiσAi

(t) +
∑

j 6=i µ
t
jσAj

(t)

−ε
=
F ∗t (σA1 , . . . , σAn)

−ε
,

from which we conclude µti = µsi .

Next consider the case where s 6= −t. For sufficiently small ε > 0, `0 + ε(s + t) ∈ ∆X.

Then:

σ{`0+ε(s+t)}(s) = σ{`0}(s) + σ{ε(s+t)}(s) = ε(1 + t · s) = σ{`+ε(s+t)}(t)

Consider the profile (A1, . . . , An) where Ai = {`0 + ε(s + t)} and Aj = {`0} for all j 6= i.

As previously, let us write F (A1, . . . , An) = µi{`0 + ε(s + t)} + (1 − µi){`0}. Therefore,

F ∗s (σA1 , . . . , σAn) = µiε(1 + s · t) = F ∗t (σA1 , . . . , σAn).

Then:

µsi =
µsiε(1 + t · s)
ε(1 + t · s)

=
µsiσAi

(s) +
∑

j 6=i µ
s
jσAj

(s)

ε(1 + t · s)
=
F ∗s (σA1 , . . . , σAn)

ε(1 + t · s)

and

µti =
µtiε(1 + t · s)
ε(1 + t · s)

=
µtiσAi

(t) +
∑

j 6=i µ
t
jσAj

(t)

ε(1 + t · s)
=
F ∗t (σA1 , . . . , σAn)

ε(1 + t · s)

As F ∗s (σA1 , . . . , σAn) = F ∗t (σA1 , . . . , σAn), we may conclude µsi = µti.

Hence, there exists a µ ∈ ∆N such that [F ∗(σA1 , . . . , σAn)](s) =
∑

i∈N µiσAi
(s) for all

s ∈ D, as desired.

Finally, we note a question our analysis leaves open, in the hope that it is resolved by

future research. Monotonicity is crucial in the proof to ensure that the linear extension of

the dual function is continuous, hence submits to the Riesz Representation Theorem. We are

unsure whether Monotonicity is redundant: we could neither prove the result without it nor

construct an example which satisfies the other conditions but fails Monotonicity. The sub-

tlety of the problem will be familiar to decision theorists working with similar mathematical

tools. While Monotonicity seems normatively innocuous, it would be technically satisfying

to resolve this question conclusively.
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