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In this supplement, we provide the axiomatic characterization of two representations
used in the main paper (henceforth denoted AS). In Section S1, we show that with only
slight modification of the axioms, the representation theorem from Dekel, Lipman,
and Rustichini (2001) can be adapted to our setting of preferences over finite menus
of lotteries. In Section S2, we show that the representation theorem for random choice
rules from Gul and Pesendorfer (2006) can be adapted to obtain a random expected-
utility representation defined on the Borel σ-algebra of the space of twice-normalized
utility functions U . We then introduce an additional finiteness axiom that allows this
representation to be formulated using a probability measure over a finite state space,
followed by a tie-breaking procedure. Proofs are contained in Section S3.

S1. DLR AXIOMS AND REPRESENTATION RESULT

The framework, notation, and definitions from the main text are all contin-
ued.

Dekel, Lipman, and Rustichini (2001) defined an additive expected-utility
representation on the domain of all subsets of Δ(Z). To ensure compatibility
with the choice domain of Gul and Pesendorfer (2006), we instead work with
the space A of finite subsets of Δ(Z). In this section, we show that the restric-
tion to finite menus requires only slight changes to the original DLR axioms.

For completeness, recall the definition of the DLR representation used in
AS:

DEFINITION S1: A DLR representation of � is a triple (S�U�μ), where S is a
finite state space, U :S×Δ(Z)→ R is a state-dependent expected-utility func-
tion, and μ is a probability distribution on S, such that the following statements
hold:

(i) A � B if and only if V (A)≥ V (B), where V : A → R is defined by

V (A)=
∑
s∈S

μ(s)max
p∈A

Us(p)�(S1)

(ii) Nonredundancy. For any two distinct states s� s′ ∈ S, Us and U ′
s do not

represent the same vNM preference on Δ(Z).
(iii) Minimality. μ(s) > 0 and Us is nonconstant for all s ∈ S.

In what follows, for any A�B ∈ A and α ∈ [0�1], the convex combination of
these two menus is defined by αA+ (1 −α)B ≡ {αp+ (1 −α)q :p ∈ A and q ∈
B}. Although our setting of finite subsets of Δ(Z) differs from that of Dekel,
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Lipman, and Rustichini (2001) and Dekel, Lipman, Rustichini, and Sarver
(2007), Axioms DLR 1–5 below are exact restatements of their axioms.1

AXIOM DLR 1—Weak Order: The relation � is complete and transitive.

AXIOM DLR 2—Continuity: The sets {B ∈ A :A � B} and {B ∈ A :B � A}
are open for all A ∈ A.

AXIOM DLR 3 —Independence: If A � B, then for any C and α ∈ (0�1),
αA+ (1 − α)C � αB + (1 − α)C.

AXIOM DLR 4—Monotonicity: If A ⊂ B, then B � A.

AXIOM DLR 5—Nontriviality: There exists some A and B such that A� B.

For analytical tractability, our DLR representation also imposes a finite state
space, which requires additional restrictions on the preference. However, our
different domain necessitates that we use a different finiteness axiom than that
considered previously by Dekel, Lipman, and Rustichini (2009). In the case
of monotone preferences, their axiom states that for every closed subset A
of Δ(Z), there exists a finite B ⊂ A such that B ∼ A. Since our domain only
includes finite subsets of Δ(Z), their axiom would be vacuous in our setting.
Therefore, we adopt the following finiteness axiom.2

AXIOM DLR 6—Finiteness: There exists K ∈ N such that for any A, there
exists B ⊂A such that |B| ≤K and B ∼A.

Dekel, Lipman, and Rustichini (2001) and Dekel et al. (2007) constructed
a representation for preferences over menus using a countably additive mea-
sure on the space of twice-normalized utility functions U = {u ∈ R

Z :
∑

z∈Z uz =
0�

∑
z∈Z u

2
z = 1}. Let Δ(U) denote the set of countably additive Borel probabil-

ity measures on U . Axiom DLR 6 will correspond to finiteness of the support
of the representing measure, where support is defined as follows.

DEFINITION S2: The support of a measure μ ∈ Δf(U) is

supp(μ) =
(⋃{

V ⊂ U :V is open and μ(V ) = 0
})c

�

1Dekel et al. (2007) established in the Supplemental Material that in the case of monotone
preferences, continuity (Axiom DLR 2) could be weakened to von Neumann–Morgenstern con-
tinuity (see their Theorem S2). However, due to the difference in domain, we need to use the
stronger form of continuity in our proof of Theorem S1.

2A related finiteness axiom was also considered by Kopylov (2009).



PREFERENCE FOR FLEXIBILITY AND RANDOM CHOICE 3

Since we will use finitely additive measures extensively in later results, Defi-
nition S2 defines the support on the larger space Δf(U) of all finitely additive
Borel probability measures on U . By definition, supp(μ) is a closed subset of
U , and u ∈ supp(μ) if and only if μ(V ) > 0 for every open set V containing u.
Moreover, it is a standard result that if μ is a countably additive measure, then
for any open set V , μ(V ) > 0 ⇐⇒ V ∩ supp(μ) �= ∅.3

THEOREM S1: The relation � satisfies Axioms DLR 1–5 if and only if there
exists μ ∈ Δ(U) such that

A� B ⇐⇒
∫

U
max
p∈A

u(p)μ(du)≥
∫

U
max
p∈B

u(p)μ(du)�(S2)

and this probability measure μ is unique. Moreover, � also satisfies Axiom DLR 6
if and only if the support of μ is finite.

Theorem S1 is a direct adaptation of the representation result from Dekel,
Lipman, and Rustichini (2001) and Dekel et al. (2007) to our framework of
finite menus of lotteries. While the result is not conceptually novel, there are
some technical issues associated with this adaptation. Details and the complete
proof can be found in Section S3.1. Briefly, the key steps are the following:
First, show that by associating any finite menu with its convex hull, there is
a well defined extension of any preference that satisfies Axioms DLR 1–5 to
the space of convex polytopes in Δ(Z). Second, using continuity, extend this
preference again to the space of all closed and convex subsets of Δ(Z). At this
point, it is then possible to appeal to the construction in Dekel et al. (2007) to
obtain the representation in Equation (S2).

The characterization of the DLR representation defined in Definition S1
now follows as a corollary to Theorem S1. To see this, suppose μ ∈ Δ(U) is a
measure with finite support satisfying Equation (S2). Construct a DLR rep-
resentation (Definition S1) as follows: Let S = supp(μ), and for each s ∈ S
and p ∈ Δ(Z), let Us(p) = s(p). Then, abusing notation slightly to denote the
restriction of μ to S also by μ, it follows that for any A ∈ A,

∑
s∈S

μ(s)max
p∈A

Us(p)=
∫

U
max
p∈A

u(p)μ(du)�

Therefore, (S�U�μ) is a DLR representation for �. Since the necessity of Ax-
ioms DLR 1–6 for any DLR representation is immediate, we have established
the following corollary.

COROLLARY S1: The relation � satisfies Axioms DLR 1–6 if and only if it has
a DLR representation (S�U�μ).

3Lemma S6 establishes this property for countably additive measures and shows that we get a
similar (but slightly weaker) result for the case of finitely additive measures.
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S2. GP AXIOMS AND REPRESENTATION RESULT

Recall the definition of the GP representation used in AS:

DEFINITION S3: A GP representation of λ is a quadruple (S�U�μ�τ), where
S is a finite state space, U :S ×Δ(Z) → R is a state-dependent utility function,
μ is a probability distribution on S, and τ is a tie-breaking rule over S such that
the following statements hold:

(i) For every A ∈ A and p ∈A,

λA(p)=
∑
s∈S

μ(s)τs
({
u ∈ U :p ∈M

(
M(A�Us)�u

)})
�

(ii) Nonredundancy. For any two distinct states s� s′ ∈ S, Us and U ′
s do not

represent the same vNM preference on Δ(Z).
(iii) Minimality. μ(s) > 0 and Us is nonconstant for all s ∈ S.

The GP representation in Definition S3 corresponds to a special case of
the tie-breaker representation from Gul and Pesendorfer (2006, Supplemen-
tal Material), where the state space is finite. Therefore, we show in this section
that the GP representation is characterized by the axioms of Gul and Pesendor-
fer (2006) together with a technical axiom ensuring this finiteness.

In what follows, the space Δ(Δ(Z)) is endowed with the topology of weak
convergence, and ext(A) denotes the set of extreme points of A. Axioms GP 1–
4 below are exact restatements of Gul and Pesendorfer’s axioms.

AXIOM GP 1—Mixture Continuity: λαA+(1−α)B is continuous in α for all A�B.

AXIOM GP 2—Monotonicity: p ∈ A ⊂ B implies λB(p)≤ λA(p).

AXIOM GP 3—Linearity: If p ∈ A and α ∈ (0�1), then λαA+(1−α){q}(αp+ (1 −
α)q) = λA(p).

AXIOM GP 4—Extreme: λA(ext(A)) = 1.

For any menu A ∈ A and lottery p ∈ A, let N(A�p) be the set of expected-
utility functions in U for which p is a maximizer in A:

N(A�p)=
{
u ∈ U :u(p)= max

q∈A
u(q)

}
�

Also, let N+(A�p) be the expected-utility functions for which p is the unique
maximizer in A:

N+(A�p)= {
u ∈ U :u(p) > u(q)�∀q ∈A \ {p}}�
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As above, let Δf(U) denote the set of all finitely additive Borel probability
measures on the set of normalized utility functions U . Gul and Pesendorfer
(2006) defined a random utility function to be a finitely additive measure over
utility functions.

DEFINITION S4: A random utility function (RUF) is a probability ν ∈ Δf(U).
A RUF is regular if ν(N+(A�p))= ν(N(A�p)) for all A ∈ A and p ∈ A.

As in the case of the tie-breaking rule (Definition 3 in AS), the regularity
condition for a random utility function requires that ties occur with probability
zero.

DEFINITION S5: A random choice rule λ maximizes a regular random utility
function ν if λA(p)= ν(N(A�p)) for all A ∈ A and p ∈A.

THEOREM S2: The RCR λ satisfies Axioms GP 1–4 if and only if there exists a
regular RUF ν such that λ maximizes ν.

There are two key differences between Definition S4 and the definition of
an RUF in Gul and Pesendorfer (2006). The first is that we impose a differ-
ent normalization on the set of utility functions. Instead of using U , they used
the space U GP = {u ∈ R

Z :uz̄ = 0} for some fixed z̄ (they took this to be the
last element in the enumeration of Z). The second difference is that instead
of using the Borel σ-algebra, they endowed this space with the algebra F GP

generated by the sets NGP(A�p) ≡ {u ∈ U GP :u(p) = maxq∈A u(q)} for A ∈ A
and p ∈ A.4 In Section S3.2, we prove Theorem S2 by showing that neither of
these differences is substantive and, hence, the representation theorem from
Gul and Pesendorfer (2006) can be applied.

In additional supplementary material, Gul and Pesendorfer (2006) consid-
ered the case of a (possibly nonregular) RUF followed by a tie-breaker. The
GP representation in Definition S3 is special case of such a representation,
where the first measure puts all probability on a finite set of utility functions.
Gul and Pesendorfer did not consider such a specialization explicitly; there-
fore, we must introduce the following new axiom.

AXIOM GP 5—Finiteness: There exists K ∈ N such that for any A, there exists
B ⊂ A with |B| ≤ K such that for every p ∈ A \ B, there are sequences pn → p
and Bn → B with λBn∪{pn}(pn)= 0 for all n.

4In contrast with the Borel algebra, this algebra does not contain all singleton sets. In par-
ticular, this algebra does not separate a utility function u ∈ U GP from its scalar multiples αu for
α> 0.
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Intuitively, if there are K possible utility functions that are assigned posi-
tive probability, then absent ties, at most K elements will be selected from any
menu with positive probability. However, in the case of ties, more than K ele-
ments of a menu may be selected with positive probability, depending on the
tie-breaking rule. The sequences in Axiom GP 5 allow the menus A and B to
be perturbed so that ties occur with probability zero.5

The following theorem shows that Axiom GP 5 implies that the RUF ν rep-
resenting λ has finite support (see Definition S2), which in turn implies there
is a GP representation for λ.

THEOREM S3: For any RCR λ, the following assertions are equivalent:
(i) λ satisfies Axioms GP 1–5.

(ii) There exists a regular RUF ν with finite support such that λ maximizes ν.
(iii) λ has a GP representation (S�U�μ�τ).

Theorem S3 is proved in Appendix S3.3. There are some subtleties to the ar-
guments. If ν is finitely additive, we need not have ν(supp(ν))= 1. In fact, if ν is
a regular RUF and supp(ν) is finite, it must be that ν(supp(ν)) = 0. Nonethe-
less, any neighborhood of supp(ν) must have probability 1 (see Lemma S6).
As a result, we are able to show that the behavior corresponding to this RUF is
equivalent to maximizing a random utility function that assigns positive prob-
ability only to supp(ν), followed by a tie-breaker. This allows us to construct a
GP representation for λ.

S3. PROOFS

S3.1. Proof of Theorem S1

To prove this representation theorem, we show in the following lemmas that
a preference � satisfying the DLR axioms on A induces a unique DLR pref-
erence on the space of closed and convex menus. Then we can appeal directly
to the construction in Dekel, Lipman, and Rustichini (2001) and Dekel et al.
(2007).

Let co(A) denote the convex hull of the menu A. Dekel, Lipman, and Rusti-
chini (2001) and Dekel et al. (2007) showed that weak order and independence
imply that for any menu A, A ∼ co(A). Since the convex hull of any nonsin-
gleton menu A is infinite, co(A) is not a part of our domain. However, the
next two lemmas establish a similar conclusion, namely, that the individual is
indifferent between any two menus that have the same convex hull.

LEMMA S1: If � satisfies weak order and independence (Axioms DLR 1
and 3), then for all A ∈ A, A ∼ 1

2A+ 1
2A.

5Note that the interpretation of the sequences in Axiom GP 5 is similar to the interpretation of
Axiom 2 of AS. There is also a formal connection: It can be shown that if the pair (��λ) satisfies
Axiom 2 of AS and � satisfies Axioms DLR 1, 4, and 6, then λ satisfies Axiom GP 5.
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PROOF: Fix any A ∈ A. If A �
1
2A + 1

2A, then independence implies that
for any B ∈ A and α ∈ (0�1), αA + (1 − α)B � α( 1

2A + 1
2A) + (1 − α)B. By

weak order, this is contradicted if we find a menu B and scalar α such that

αA+ (1 − α)B = α

(
1
2
A+ 1

2
A

)
+ (1 − α)B�

Let k= |A| and let

B = 1
k− 1

A+ · · · + 1
k− 1

A︸ ︷︷ ︸
k−1

�

Then, for α= 2
k+1 , we have

αA+ (1 − α)B = 2
k+ 1

A+ 1
k+ 1

A+ · · · + 1
k+ 1

A︸ ︷︷ ︸
k−1

�

α

(
1
2
A+ 1

2
A

)
+ (1 − α)B = 1

k+ 1
A+ · · · + 1

k+ 1
A︸ ︷︷ ︸

k+1

�

Clearly, αA+ (1 −α)B ⊂ α( 1
2A+ 1

2A)+ (1 −α)B. To see the converse, fix any
p ∈ α( 1

2A+ 1
2A)+ (1 −α)B. Then p = ∑k+1

i=1
1

k+1p
i for some p1� � � � �pk+1 ∈ A.

However, since |A| = k, we must have pi = pj for some i �= j. Without loss of
generality, assume the pi’s are ordered so that p1 = p2. Then p = 2

k+1p
1 +∑k+1

i=3
1

k+1p
i ∈ αA + (1 − α)B. This establishes the desired contradiction.

Q.E.D.

LEMMA S2: If � satisfies weak order, continuity, independence, and mono-
tonicity (Axioms DLR 1–4), then co(B) ⊂ co(A) implies A � B. In particular, if
co(A) = co(B), then A ∼ B.

PROOF: Suppose A�B ∈ A satisfy co(B)⊂ co(A). Define a sequence of sets
inductively by A0 = A and Ak = 1

2Ak−1 + 1
2Ak−1 for k ≥ 1. By Lemma S1

and transitivity, we have A ∼ Ak for all k. Suppose for a contradiction that
B � A. Then, by continuity, there exists ε > 0 such that C � A whenever
dh(B�C) < ε. We will contradict this by finding a menu C ∈ A such that C ⊂Ak

for some k and dh(B�C) < ε. Then monotonicity requires that A ∼ Ak � C
and dh(B�C) < ε requires that C � A, a contradiction.

To construct the desired menu C, first note that dh(Ak� co(A)) → 0. Now fix
k such that dh(Ak� co(A)) < ε and let C = {p ∈ Ak :d(p�q) < ε for some q ∈
B}. Since B ⊂ co(B) ⊂ co(A) for every q ∈ B, there exists p ∈ Ak such that
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d(p�q) < ε. Thus, for every q ∈ B, there exists p ∈ C with d(p�q) < ε. Con-
versely, p ∈C implies by definition that d(p�q) < ε for some q ∈ B. Therefore,
conclude that dh(B�C) < ε. Q.E.D.

One difficulty in working with the space A is that it is not a mixture space.
For example, we may have αA + (1 − α)A �= A. However, making use of
the previous lemma, we can define an induced preference on the space P
of convex polytopes in Δ(Z). Note that P = {co(A) :A ∈ A}. Moreover, P
is a mixture space. Define a binary relation �∗ on P by P �∗ Q if there ex-
ists A�B ∈ A such that P = co(A), Q = co(B), and A � B. Then, by defini-
tion, A � B implies co(A) �∗ co(B). Since Lemma S2 ensures that A ∼ A′

whenever co(A) = co(A′), we also obtain the converse: co(A) �∗ co(B) im-
plies A � B.

LEMMA S3: If � satisfies Axioms DLR 1–4, then there exists an affine, mono-
tone, and Lipschitz continuous utility representation V : P → R of �∗. Moreover,
V is unique up to a positive affine transformation.

PROOF: As noted above, P is a mixture space, and Lemma S2 implies that
�∗ is well defined. We now verify that �∗ satisfies the axioms of the mixture-
space theorem. The weak order axiom on � (Axiom DLR 1) implies �∗ is
also a weak order. It is a standard result that the continuity axiom on � (Ax-
iom DLR 2) implies that � also satisfies von Neumann–Morgenstern continu-
ity. Suppose P�Q�R ∈ P satisfy P = co(A) �∗ Q = co(B) �∗ R = co(C). Then
A � B � C and, hence, there exist α�β ∈ (0�1) such that αA+ (1 −α)C � B �
βA + (1 − β)C . Together with the identity co(αA + (1 − α)C) = α co(A) +
(1 −α) co(C), this implies �∗ satisfies von Neumann–Morgenstern continuity:

αP + (1 − α)R= co
(
αA+ (1 − α)C

)
�∗ co(B)= Q

�∗ co
(
βA+ (1 −β)C

) = βP + (1 −β)R�

A similar argument shows that the independence axiom on � induces the in-
dependence axiom on �∗. Therefore, we can apply the mixture-space theorem
to conclude that there exists an affine function V : P → R that represents �∗

and that this representation is unique up to a positive affine transformation.
Since �∗ is monotone by Lemma S2, so is this representation V .

It remains only to show that V is Lipschitz continuous. However, by Lem-
ma S1 in the Supplemental Material of Dekel et al. (2007), monotonicity of �∗

implies that it also satisfies their L-continuity axiom.6 Therefore, their Lem-
ma S8 can be applied to conclude that V is Lipschitz continuous.7 Q.E.D.

6Although Dekel et al. (2007) worked with the space of all closed subsets of Δ(Z), it is easy to
see that the arguments in their Lemma S1 carry through even when restricted to convex polytopes.

7Again, the restriction to polytopes does not affect this result.
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The following result shows that V has a unique continuous extension to the
set of all convex menus Ac ≡ {A ⊂ Δ(Z) :A is closed and convex}, which was
the domain used in the proofs in Dekel, Lipman, and Rustichini (2001) and
Dekel et al. (2007).

LEMMA S4: If V : P → R is Lipschitz continuous, affine, and monotone, then
there exists an extension V̂ : Ac → R of V that is also Lipschitz continuous, affine,
and monotone. Moreover, any continuous extension of V from P to Ac is unique.

PROOF: By Theorem 1.8.13 in Schneider (1993), P is dense in Ac . There-
fore, since V is Lipschitz (and hence uniformly) continuous, Lemma 3.11 in
Aliprantis and Border (2006) implies that V has a unique continuous exten-
sion V̂ to Ac .

To see that V̂ satisfies the desired properties, fix any A�B ∈ Ac , and take
sequences {Pn}� {Qn} ⊂ P such that Pn → A and Qn → B. Let K > 0 be a Lips-
chitz constant for V on P . To see that V̂ is Lipschitz continuous with the same
constant K, note that V (Pn) = V̂ (Pn) → V̂ (A) and V (Qn) = V̂ (Qn) → V̂ (B),
and hence∣∣V̂ (A)− V̂ (B)

∣∣ = lim
n→∞

∣∣V (Pn)− V (Qn)
∣∣

≤ lim
n→∞

Kdh(Pn�Qn)= Kdh(A�B)�

To see that V̂ is affine, fix any α ∈ (0�1). Since αPn + (1 − α)Qn → αA+ (1 −
α)B, we have

V̂
(
αA+ (1 − α)B

) = lim
n→∞

V
(
αPn + (1 − α)Qn

)
= lim

n→∞
[
αV (Pn)+ (1 − α)V (Qn)

]
= αV̂ (A)+ (1 − α)V̂ (B)�

Finally, to see that V̂ is monotone, suppose A ⊂ B. For each n, let Rn = co(Pn∪
Qn) ∈ P . Then Pn ⊂ Rn, which implies V (Pn) ≤ V (Rn). Moreover, it is a stan-
dard result that Rn → co(A ∪ B) = B. Therefore, V̂ (A) = limn→∞ V (Pn) ≤
limn→∞ V (Rn)= V̂ (B). Q.E.D.

We now proceed to proving Theorem S1.
Representation. The necessity of the axioms for the representation in Equa-

tion (S2) is straightforward. For the other direction, suppose � satisfies Ax-
ioms DLR 1–5. By the preceding lemmas, there exists a Lipschitz continu-
ous, affine, and monotone function V̂ : Ac → R such that for any A�B ∈ A,
A � B ⇐⇒ co(A) �∗ co(B) ⇐⇒ V̂ (co(A)) ≥ V̂ (co(B)). Moreover, by the
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uniqueness properties in Lemma S3, we can normalize V̂ so that the uniform
distribution gets utility 0. Then, from the construction in the Supplemental
Material of Dekel et al. (2007) (in particular, see Lemmas S9–S12 and the sur-
rounding discussion), there exists a finite Borel measure μ on U such that for
every A ∈ Ac ,

V̂ (A)=
∫

U
max
p∈A

u(p)μ(du)�

Therefore, for any A�B ∈ A,

A� B ⇐⇒
∫

U
max

p∈co(A)
u(p)μ(du)≥

∫
U

max
p∈co(B)

u(p)μ(du)

⇐⇒
∫

U
max
p∈A

u(p)μ(du)≥
∫

U
max
p∈B

u(p)μ(du)�

where the last equivalence follows from the linearity of each u ∈ U . Finally, by
nontriviality (Axiom DLR 5), μ �= 0 and, therefore, μ can be normalized to be
a probability measure.

Uniqueness. Suppose μ1�μ2 ∈ Δ(U) both satisfy Equation (S2). Define
V1� V2 : Ac → R for A ∈ Ac by

Vi(A) =
∫

U
max
p∈A

u(p)μi(du)�

By the linearity of each u ∈ U , for any A ∈ A,

Vi

(
co(A)

) =
∫

U
max

p∈co(A)
u(p)μi(du) =

∫
U

max
p∈A

u(p)μi(du)�

Since both μ1 and μ2 satisfy Equation (S2), this implies that for all A�B ∈ A,

V1

(
co(A)

) ≥ V1

(
co(B)

) ⇐⇒ A � B

⇐⇒ V2

(
co(A)

) ≥ V2

(
co(B)

)
�

Thus, V1 and V2 are ordinally equivalent on P = {co(A) :A ∈ A}. Therefore,
by the uniqueness part of Lemma S3, there exists α > 0 and β ∈ R such that
V1(P) = αV2(P) + β for all P ∈ P . By the uniqueness part of Lemma S4, it
follows that V1(A) = αV2(A)+β for all A ∈ Ac . Hence,∫

U
max
p∈A

u(p)μ1(du) = α

∫
U

max
p∈A

u(p)μ2(du)+β ∀A ∈ Ac�(S3)

Let p∗ = (1/|Z|� � � � �1/|Z|) be the uniform distribution. Then, for A =
{p∗}, we have maxp∈A u(p) = 0 for all u ∈ U by the normalization of U .
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Applying Equation (S3) to this menu A yields β = 0. Now, for B = {p ∈
Δ(Z) :d(p�p∗) ≤ 1/|Z|}, we have maxp∈B u(p) = 1/|Z| for all u ∈ U (see, e.g.,
Lemma 6 in Sarver (2008)). Thus, applying Equation (S3) to this menu B yields
μ1(U)/|Z| = αμ2(U)/|Z|. Since μ1 and μ2 are probabilities, this implies α= 1.
Therefore, for every A ∈ Ac ,

∫
U

max
p∈A

u(p)μ1(du) =
∫

U
max
p∈A

u(p)μ2(du)�

By Lemma 18 in Sarver (2008), this implies μ1 = μ2, as desired.
Finiteness. If supp(μ) is finite, then � clearly satisfies Axiom DLR 6 with

K = | supp(μ)|: For any A, simply let B contain a maximizer of each u ∈
supp(μ) on A.

Conversely, suppose � is represented by μ and � satisfies the finiteness ax-
iom. Fix K from this axiom. We will show that | supp(μ)| >K (in particular, the
support being infinite) leads to a contradiction. If | supp(μ)| >K, then choose
F ⊂ supp(μ) such that |F | =K+1. Take A ∈ A as described in Lemma 1 of AS
for this set F . Then, by part (i) of the lemma, for each u ∈ F , there exists p ∈A
such that u(p) > u(q) for all q ∈ A \ {p}. Denote this lottery by pu. Moreover,
since F ⊂ U and no two distinct u�v ∈ U represent the same expected-utility
preference, part (ii) of Lemma 1 in AS implies that pu �= pv for any u�v ∈ F ,
u �= v. In particular, |{pu :u ∈ F}| =K + 1.

To see that these assumptions contradict Axiom DLR 6, take any B ⊂A with
|B| ≤ K. Then there exists ū ∈ F such that pū /∈ B. Thus, ū(pū) > ū(q) for all
q ∈ B. Consider the set

E ≡
{
u ∈ U : max

p∈A
u(p) > max

p∈B
u(p)

}
�

This set is open by the continuity of the mappings u �→ maxp∈A u(p) and u �→
maxp∈B u(p). Moreover, since ū ∈ E, we have E ∩ supp(μ) �= ∅. Therefore,
μ(E) > 0 by part (i) of Lemma S6 below. This implies

∫
U

max
p∈A

u(p)μ(du) >

∫
U

max
p∈B

u(p)μ(du)�

contradicting Axiom DLR 6. Therefore, conclude that | supp(μ)| ≤K. Q.E.D.

S3.2. Proof of Theorem S2

Gul and Pesendorfer (2006) used the following set of utility functions, where
z̄ is some fixed element of Z (they took z̄ to be the last element in the enumer-
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ation of Z)8:

U GP = {
u ∈ R

Z :uz̄ = 0
}
�

The sets NGP(A�p) and N+
GP(A�p) are defined as subsets of U GP analogously

to the definitions of N(A�p) and N+(A�p) in U :

NGP(A�p)=
{
u ∈ U GP :u(p)= max

q∈A
u(q)

}
�

N+
GP(A�p)= {

u ∈ U GP :u(p) > u(q)�∀q ∈A \ {p}}�
Let F GP denote the algebra generated by the sets NGP(A�p) for A ∈ A and
p ∈ A. Gul and Pesendorfer (2006) defined random utility functions and reg-
ularity just as in Definition S4 in Section S2, but on the space (U GP� F GP). The
following theorem is a restatement of their Theorem 2.

THEOREM S4 —Gul and Pesendorfer (2006): The RCR λ satisfies Axioms
GP 1–4 if and only if there exists a finitely additive probability measure νGP

on (U GP� F GP) such that λA(p) = νGP(NGP(A�p)) = νGP(N+
GP(A�p)) for all

A ∈ A and p ∈ A.9

To prove Theorem S2, we will show that any finitely additive probability mea-
sure νGP on (U GP� F GP) can be transformed into a RUF ν ∈ Δf(U) that is max-
imized by the same random choice rule. The following lemma provides a key
step in this argument.

LEMMA S5: There exists a (unique) function f : U GP → U ∪{0} such that u and
f (u) represent the same preference over lotteries, and for any A ∈ A and p ∈ A,

f−1
(
N(A�p)

) =NGP(A�p) \ {0}�(S4)

f−1
(
N+(A�p)

) =N+
GP(A�p) \ {0}�

Moreover, letting F denote the algebra on U generated by the sets N(A�p),
f−1(E) ∈ F GP for every E ∈ F .

8Aside from simply being normalized differently, the set U GP also differs from U in a substan-
tive way: Unlike with U , multiple utility functions in U GP may represent the same expected utility
preference. Specifically, for any u ∈ U GP, we also have αu ∈ U GP for any α> 0.

9The first equality λA(p) = νGP(NGP(A�p)) implies that νGP is maximized by λ, and the sec-
ond equality νGP(NGP(A�p)) = νGP(N+

GP(A�p)) is the regularity condition applied to νGP. How-
ever, the regularity condition does not need to be included explicitly in this result since it can be
shown that regularity is implied whenever νGP is maximized by a RCR λ. In fact, Gul and Pe-
sendorfer (2006) showed that regularity is both a necessary and sufficient condition on νGP for
there to exist a RCR λ that maximizes νGP.
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PROOF: Representing expected-utility functions as vectors in R
Z and letting

1 = (1� � � � �1) denote the unit vector, let f (u) = 0 if u ∈ R
Z is constant (i.e.,

u= (α� � � � �α)) and otherwise let

f (u) =
u−

(
1

|Z|
∑
z∈Z

uz

)
1

∥∥∥∥u−
(

1
|Z|

∑
z∈Z

uz

)
1
∥∥∥∥
�

By construction, f (u) ∈ U ∪ {0} for all u ∈ U GP (in fact, for any u ∈ R
Z),

and since f (u) is simply an affine transformation of u, it represents the
same expected-utility preference. Therefore, it is immediate that p is optimal
(strictly optimal) in A with respect to the utility function u ∈ U GP if and only
if p is optimal (strictly optimal) in A with respect to f (u) ∈ U ∪ {0}. Since
f (u) ∈ U whenever u �= 0, the equalities in Equation (S4) follow directly.

To verify the last claim, first note that {0} ∈ F GP and hence f−1(N(A�p)) =
NGP(A�p) \ {0} ∈ F GP for all A ∈ A and p ∈ A. Since F is the algebra gener-
ated by the sets N(A�p), standard arguments can be used to show this implies
f−1(E) ∈ F GP for every E ∈ F . Q.E.D.

We now proceed to proving Theorem S2. The necessity of the axioms is
straightforward and directly replicates the arguments used in Gul and Pe-
sendorfer (2006).

To show sufficiency of the axioms, suppose the RCR λ satisfies Axioms
GP 1–4. By Theorem S4, there exists a finitely additive probability measure
νGP on (U GP� F GP) such that λA(p) = νGP(NGP(A�p)) = νGP(N+

GP(A�p)) for
all A ∈ A and p ∈ A. Note that for any p�q ∈ Δ(Z), p �= q, we have 0 ∈
NGP({p�q}�p) and 0 /∈ N+

GP({p�q}�p). Therefore, since νGP(N+
GP({p�q}�p)) =

νGP(NGP({p�q}�p)) by regularity, it must be that νGP({0})= 0.
Take f and F as in Lemma S5. Define a measure ν on (U� F) by ν(E) =

νGP(f−1(E)) for E ∈ F . Finite additivity of ν follows from the finite additivity of
νGP. Also, since νGP({0}) = 0, we have ν(U) = νGP(f−1(U)) = νGP(U GP \ {0}) =
1. Hence, ν is a probability. By Equation (S4),

ν
(
N(A�p)

) = νGP
(
NGP(A�p) \ {0}) = νGP

(
NGP(A�p)

)
�

ν
(
N+(A�p)

) = νGP
(
N+

GP(A�p) \ {0}) = νGP
(
N+

GP(A�p)
)
�

and therefore λA(p) = ν(N(A�p)) = ν(N+(A�p)) for all A ∈ A and p ∈ A.
Finally, since each N(A�p) is a closed subset of U , the algebra F is contained
in the Borel σ-algebra BU . By Theorem 3.4.4 in Rao and Rao (1983), there
exists a finitely additive measure ν̄ on (U�BU) which is an extension of ν from
F to BU . Q.E.D.
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S3.3. Proof of Theorem S3

S3.3.1. A Preliminary Result

The following lemma gives some useful properties of the support of a finitely
additive measure (see Definition S2). It was used implicitly in the construction
of the DLR representation in Corollary S1 and will be used in several parts of
the proof of Theorem S3.

LEMMA S6: Fix any finitely additive measure μ ∈ Δf(U). The following state-
ments hold:

(i) For any open set V , V ∩ supp(μ) �= ∅ �⇒ μ(V ) > 0.
(ii) For any compact set C, C ∩ supp(μ) = ∅ �⇒ μ(C) = 0.
(iii) If μ is countably additive, then μ(supp(μ)) = 1. In particular, for any

measurable set V ∈ BU , V ∩ supp(μ) = ∅ �⇒ μ(V ) = 0.

PROOF: Part (i). If V is open and μ(V ) = 0, then V ∈ {V ′ ⊂ U :V ′ is open
and μ(V ′) = 0}, so V ⊂ supp(μ)c . By contrapositive, V ∩ supp(μ) �= ∅ �⇒
μ(V ) > 0.

Part (ii). Suppose C is compact and C ∩ supp(μ)= ∅. Then C ⊂ supp(μ)c =⋃{V ⊂ U :V is open and μ(V ) = 0}. Therefore, there exists a finite sub-
cover {V1� � � � � Vn} of C, and by finite subadditivity, μ(C) ≤ μ(

⋃n

i=1 Vi) ≤∑n

i=1 μ(Vi)= 0.
Part (iii). Since U is a separable metric space, it is second countable and

hence supp(μ)c = ⋃{V ⊂ U :V is open and μ(V ) = 0} can be expressed as
a countable union of sets of measure zero. If μ is countably additive, this
implies μ(supp(μ)c) = 0. Now suppose V ∈ BU and V ∩ supp(μ) = ∅. Then
V ⊂ supp(μ)c , and hence μ(V ) ≤ μ(supp(μ)c)= 0. Q.E.D.

S3.3.2. Proof of (i) ⇒ (ii)

Suppose λ satisfies Axioms GP 1–5. By Theorem S2, since λ satisfies Axioms
GP 1–4, there exists a regular RUF ν such that λ maximizes ν. Now take K as in
Axiom GP 5. We will show that | supp(ν)| >K (in particular, the support being
infinite) leads to a contradiction. If | supp(ν)| > K, then choose F ⊂ supp(ν)
such that |F | = K + 1. Take A ∈ A as described in Lemma 1 of AS for this
set F . Then, by part (i) of the lemma, for each u ∈ F , there exists p ∈ A such
that u(p) > u(q) for all q ∈ A \ {p}. Denote this lottery by pu. Moreover,
since F ⊂ U and no two distinct u�v ∈ U represent the same expected-utility
preference, part (ii) of Lemma 1 of AS implies that pu �= pv for any u�v ∈ F ,
u �= v. In particular, |{pu : u ∈ F}| = K + 1.

To see that these assumptions contradict Axiom GP 5, take any B ⊂ A with
|B| ≤ K. Then there exists u ∈ F such that pu /∈ B. Thus, u(pu) > u(q) for all
q ∈ B. Fix any sequences pn → pu and Bn → B. By continuity, there exists N ∈
N such that for n ≥N , u(pn) > u(q) for all q ∈ Bn. Thus, u ∈N+(Bn ∪{pn}�pn)
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for all n ≥N . Since u ∈ supp(ν) and N+(Bn∪{pn}�pn) is an open set, part (i) of
Lemma S6 implies ν(N+(Bn ∪ {pn}�pn)) > 0 for n ≥N . Hence, for all n ≥N ,

λBn∪{pn}(pn) = ν
(
N

(
Bn ∪ {pn}�pn

)) = ν
(
N+(

Bn ∪ {pn}�pn

))
> 0�

contradicting Axiom GP 5. Therefore, conclude that | supp(ν)| ≤ K.

S3.3.3. Proof of (ii) ⇒ (iii)

We begin by considering the case of a RUF ν with singleton support,
supp(ν) = {u}. In this case, the following lemma shows that the only lotteries
that are selected with positive probability by this RUF are those that maxi-
mize u.

LEMMA S7: Suppose ν ∈ Δf(U) and supp(ν) = {u} for some u ∈ U . Then, for
any A ∈ A and p ∈ A, ν(N(A�p))= ν(N(M(A�u)�p)).10

PROOF: Fix any A ∈ A and p ∈A. First, note that for any q ∈A,

q /∈ M(A�u) �⇒ u /∈N(A�q) �⇒ ν
(
N(A�q)

) = 0�(S5)

where the last implication follows from part (ii) of Lemma S6. Therefore, if p /∈
M(A�u), then ν(N(A�p))= 0 = ν(N(M(A�u)�p)). Consider the remaining
case of p ∈M(A�u). Then

N(A�p)⊂N
(
M(A�u)�p

) ⊂
(
N(A�p)∪

⋃
q∈A\M(A�u)

N(A�q)

)

implies that

ν
(
N(A�p)

) ≤ ν
(
N

(
M(A�u)�p

))
≤ ν

(
N(A�p)

) +
∑

q∈A\M(A�u)

ν
(
N(A�q)

) = ν
(
N(A�p)

)
�

where the last equality follows from Equation (S5). Q.E.D.

The following lemma uses the preceding result to construct a GP represen-
tation for any regular RUF ν with finite support. Recall that BU denotes the
Borel σ-algebra on the set U . For any u ∈ U and ε > 0, denote the open ball of
radius ε around u by Bε(u)≡ {v ∈ U :‖u− v‖< ε}.

10It may be that p /∈ M(A�u) even if p ∈ A, in which case N(M(A�u)�p) is not de-
fined. Therefore, we adopt the convention that N(A�p) = ∅ if p /∈ A. As a result, we have
N(M(A�u)�p) = {v ∈ U :p ∈M(M(A�u)� v)} for all A and p.
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LEMMA S8: Suppose ν ∈ Δf(U) is a regular RUF with finite support. Fix any
ε > 0 such that Bε(u)∩Bε(v)= ∅ for all u�v ∈ supp(ν), u �= v. Let S = supp(ν).

(i) Taking μ = ∑
s∈S ν(Bε(s))δs defines a probability measure on S, and

μ(s) > 0 for all s ∈ S.
(ii) Taking τs(V ) = ν(V ∩Bε(s))

ν(Bε(s))
for V ∈ BU defines a tie-breaking rule τs ∈ Δf(U).

Moreover, for these measures, for any A ∈ A and p ∈ A,

ν
(
N(A�p)

) =
∑
s∈S

μ(s)τs
({
u ∈ U :p ∈ M

(
M(A�s)�u

)})
�(S6)

PROOF: Part (i). Since C = U \(⋃s∈S Bε(s)) is compact and C∩ supp(ν)= ∅,
part (ii) of Lemma S6 implies ν(C) = 0. Therefore,

∑
s∈S

ν
(
Bε(s)

) = ν

(⋃
s∈S

Bε(s)

)
= 1�(S7)

implying that μ is a probability measure. Also, for any s ∈ S, μ(s) = ν(Bε(s)) >
0 by part (i) of Lemma S6.

Part (ii). First note that for any s ∈ S, τs is well defined since ν(Bε(s)) > 0.
Therefore, by construction, τs ∈ Δf(U) since ν ∈ Δf(U). To see that τs sat-
isfies the regularity condition, fix any A ∈ A and p ∈ A. Since ν is reg-
ular, ν(N+(A�p)) = ν(N(A�p)). Together with the fact that N+(A�p) ⊂
N(A�p), this implies that τs(N+(A�p))= τs(N(A�p)).

Equation (S6). Note that supp(τs) = {s} for each s ∈ S. Therefore, by
Lemma S7, τs(N(A�p))= τs(N(M(A� s)�p)) for any A ∈ A and p ∈ A. As a
result,

∑
s∈S

μ(s)τs
({
u ∈ U :p ∈M

(
M(A�s)�u

)})

=
∑
s∈S

μ(s)τs
(
N

(
M(A�s)�p

))

=
∑
s∈S

μ(s)τs
(
N(A�p)

) =
∑
s∈S

ν
(
N(A�p)∩Bε(s)

)

= ν

(
N(A�p)∩

(⋃
s∈S

Bε(s)

))
= ν

(
N(A�p)

)
�

where the last equality follows from Equation (S7). Q.E.D.

To complete the proof of (ii) ⇒ (iii), suppose there exists a regular RUF ν
with finite support such that λ maximizes ν. Take S, μ, and τ as in Lemma S8.
For each s ∈ S, define Us :Δ(Z) → R by Us(p) = s(p) for p ∈ Δ(Z). We claim
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that (S�U�μ�τ) is a GP representation for λ. By Equation (S6), for any A ∈ A
and p ∈ A,

λA(p)= ν
(
N(A�p)

) =
∑
s∈S

μ(s)τs
({
u ∈ U :p ∈ M

(
M(A�Us)�u

)})
�

The other conditions in the definition of the GP representation are readily
verified.

S3.3.4. Proof of (iii) ⇒ (i)

Suppose the λ has a GP representation (S�U�μ�τ). The necessity of Ax-
ioms GP 1–4 is straightforward and replicates the arguments used in the proof
of Theorem S1 in the Supplemental Material of Gul and Pesendorfer (2006).
We now show that λ satisfies Axiom GP 5. Let K = |S|. Fix any A ∈ A. For each
s ∈ S, choose qs ∈ A such that Us(q

s) = maxq∈AUs(q) and let B = {qs : s ∈ S}.
Then |B| ≤ K and for any p ∈ A \ B, Us(p) ≤ maxq∈B Us(q). By the same ar-
guments used in the proof of Proposition 2 in AS, for every ε > 0, there exist r
and C with d(p� r) < ε and dh(B�C) < ε such that λC∪{r}(r) = 0. Intuitively, if
Us(p) ≤ maxq∈B Us(q) for all s ∈ S, then p and B can be perturbed slightly to
get nearby r and C for which the inequality is strict for all s, so that r will never
be chosen from C. Consequently, for every n ∈ N, there exists pn and Bn with
d(p�pn) < 1/n and dh(B�Bn) < 1/n such that λBn∪{pn}(pn) = 0. Thus, Bn → B
and pn → p, and hence λ satisfies Axiom GP 5.
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