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Abstract

We provide a bound on the size of simultaneous best response cycles for generic

finite two-player games. The bound shows that no cycle will move through the entire

strategy space as long as either player has more than two strategies. This bound

increases quadratically in the size of the strategy spaces. It is the tightest possible in

the sense that we can construct a generic game with a cycle that achieves the bound.
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1 Introduction

The idea that players in a repeated two-person game will play the best response to their

opponents’ actions in the last period dates at least to Cournot’s [1] study of oligopoly. He

showed this myopic adjustment process may approach a steady state corresponding to Nash

equilibrium. In more modern research, variants of this learning process are used to justify

the play of Nash strategies. In particular, various studies investigate whether this process is

asymptotically stable and approaches a limit strategy, e.g. [2,3].

This asymptotic analysis considers continuous strategy spaces, often through mixed

strategies, as the notion of a limit strategy is vacuous otherwise. In contrast, we examine

myopic best response dynamics in a finite game. Rather than identifying stable asymptotic

behavior, we study the discrete cycles in these finite games directly. Particularly, we quantify

a generic bound on their size. This bound implies that no Cournot adjustment process will

cycle through the entire strategy space if either player has more than two strategies. Further,

we demonstrate that the mentioned bound is the tightest possible, in the sense that we can

construct a game producing a best response cycle of that size.

2 Setup

A finite two-player game G = 〈S1, S2, U1, U2〉 consists of a finite action or strategy space Si

and a utility function Ui : S1×S2 → R for each player i = 1, 2. Assume |S1| ≤ |S2|. The best

response correspondence BRi : Sj → Si is defined by BRi(sj) = arg maxsi∈Si
Ui(si, sj). The

profile of best responses BR : S → S is BR(s) = (BR1(s2), BR2(s1)) where S = S1 × S2.

Let BR1 = BR and BRk = BR ◦BRk−1.

Definition 1. A best response cycle is a subset C ⊆ S such that for all c, c′ ∈ C, there

exists k such that c′ ∈ BRk(c).

Note that the conclusion of the definition must hold even if c = c′. Of course, if |C| = 1,

then C is a pure strategy Nash equilibrium. There are other intuitive definitions which are

equivalent to this one.

Definition 2. A game is generic if BRi is singleton-valued for each player i.

Given fixed strategy spaces, the set of such games is open and dense in the Euclidean

space R2|S1||S2| of possible payoffs. In generic games, two different cycles are always disjoint.

We should mention that the cycles we examine result from simultaneous adjustments,

as opposed to a process where players alternate updating their strategies. Also, we are not

considering the mixed extension of the game, restricting the analysis to pure strategies.
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α β
A 1, 0 0, 1
B 0, 1 1, 0

Figure 1: Matching Pennies

α β γ
A 1, 0 0, 1 0, 0
B 0, 0 1, 0 0, 1
C 0, 1 0, 0 1, 0

α β γ
A C1 C2 D2

B D1 C3 C4

C C6 D3 C5

Figure 2: A 3× 3 analog of Matching Pennies

The single best response cycle of Matching Pennies is perhaps the best known of all.

Because its cycle occupies the entire strategy space, Matching Pennies is sometimes offered

as an example of a particularly chaotic game.

A 3 × 3 analog of Matching Pennies, which is similar to the children’s game of Rock-

Paper-Scissors, is presented in Figure 2. The game is generic and has two best response

cycles, C = {(A, α), (A, β), (B, β), (B, γ), (C, γ), (C, α)} and D = {(B, α), (A, γ), (C, β)},
with six and three elements respectively. The first cycle C involves updated responses by a

single, but alternating, player at a time, so each step in the cycle moves either horizontally

or vertically in the strategy space. On the other hand, D involves simultaneously updated

strategies by both players at each step, so moves diagonally through the strategies.

This 3 × 3 game suggests two conjectures. First, the largest cycle is twice as large as

S1. Second, the largest cycle involves updating by one player at a time. These intuitions

are generally true when S1 ≤ 4. They are also particularly confirmed in the 5× 5 version of

Matching Pennies, which has three cycles, the largest of which is C with ten elements.

However, these conjectures fail whenever S1 ≥ 5. A larger cycle in a 5× 5 game can be

constructed by appending the 3 × 3 and 2 × 2 versions of Matching Pennies, as shown in

Figure 2. This game has four cycles. In particular, the cycle E has 12 elements and involves

α β γ δ ε
A 1, 0 0, 1 0, 0 0, 0 0, 0
B 0, 0 1, 0 0, 1 0, 0 0, 0
C 0, 0 0, 0 1, 0 0, 1 0, 0
D 0, 0 0, 0 0, 0 1, 0 0, 1
E 0, 1 0, 0 0, 0 0, 0 1, 0

α β γ δ ε
A C1 C2 D2 E2 D9

B D1 C3 C4 D4 E4

C E1 D3 C5 C6 D6

D D8 E3 D5 C7 C8

E C10 D10 E5 D7 C9

Figure 3: A 5× 5 analog of Matching Pennies
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α β γ δ ε
A 1, 0 0, 1 0, 0 0, 0 0, 0
B 0, 0 1, 0 0, 1 0, 0 0, 0
C 0, 1 0, 0 1, 0 0, 0 0, 0
D 0, 0 0, 0 0, 0 0, 1 1, 0
E 0, 0 0, 0 0, 0 1, 0 0, 1

α β γ δ ε
A C1 C2 D2 E2 E8

B D1 C3 C4 E10 E4

C C6 D3 C5 E6 E12

D E1 E9 E5 F 1 F 2

E E7 E3 E11 F 4 F 3

Figure 4: A 5× 5 game with a larger cycle

simultaneous adjustments by both players at each stage.

3 Results

The main result provides a bound on the size of best response cycles in a generic finite

two-player game. The proof decomposes the cycle into two sequences: each player’s initial

action, her opponent’s response to that action, his response to her response, and so on. The

bound is computed by examining the rate of recurrence for both sequences. For example,

the E cycle in Figure 2 is:

S1 D A E B D C E A D B E C

S2 α δ β ε γ δ α ε β δ γ ε

One sequence can be constructed as the first player’s initial action D, then the second

player’s best response δ to D, the first players best response E to δ, and so on. This

essentially proceeds diagonally along the array. Doing similarly for the initial action α for

the second player, we can construct two sequences, a and b:

0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
a D δ E ε D δ E ε D δ E ε D · · ·
b α A β B γ C α A β B γ C α · · ·

Then D recurs in the first sequence at every fourth index, while α recurs in the second

sequence at every sixth index. Then the first recurrence of the profile (D, α) will be at the

least common multiple of four and six, namely twelve. That first recurrence corresponds

exactly to the length of the cycle. If both sequences had shared identical elements, then the

first recurrence of the profile would have been at the first recurrent in either sequence. Our

main result formalizes this argument.

For any two positive integers m, n, we denote their least common multiple by lcm(m, n) =
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min{x > 0 : x/m and x/n are integers}. The integers are relatively prime if lcm(m, n) =

mn.

Proposition 1. If G is generic, then the size of any best response cycle is bounded by

2(max{lcm(m, n) : m + n ≤ |S1|} ∨ |S1|).

Proof. Genericity of G guarantees that the best response correspondence is singleton-valued,

so we treat BR : S → S as a function in the proof. Consider a best response cycle C and

select any strategy profile s ∈ C. Initialize C0 = s and let Ck = BRk(s). We recursively

define a sequence {ak} ⊆ S1 ∪ S2. Let a0 = s1, the first player’s strategy at the beginning

of the cycle. For any odd index k, let ak = BR2(a
k−1), which is the second player’s best

response to the previous element of the sequence. For any even index k, let ak = BR1(a
k−1),

which is the first player’s best response to the previous element of the sequence. Similarly,

define the sequence bk by starting b0 = s2, bk = BR1(a
k−1) for k odd, and bk = BR2(a

k−1)

for k even.

Since C is a cycle, the first player’s initial action a0 must recur in the {ak} sequence.

Moreover, since the odd elements of a are from the second player’s strategy set, the first

recurrence of a0 must be at an even index m = {k > 0 : ak = a0}. So there exists an even

integer m such that Cm = (a0, b) for some b ∈ S2. Finally, observe that a0 recurs at any

positive integer multiple zm of m: azm = a0 for any positive integer z.

Similarly, let n be the minimal n > 1 with bn = s2. Then, mutatis mutandis, n/2 ≤ |S1|
and bzn = b0 for all positive integer multiples zn of n. Since the least common multiple

lcm(m, n) is a positive integer multiple of both m and n, we have alcm(m,n) = a0 and blcm(m,n) =

b0. Hence C lcm(m,n) = C0, so |C| ≤ lcm(m, n).

Let A1 = {ak : k even} ⊆ S1 and B1 = {bk : k odd} ⊆ S1. Similarly, define A2 =

{ak : k odd} ⊆ S2 and B2 = {bk : k even} ⊆ S2. Recalling the construction of a and b,

A2 = BR2(A1) and A1 = BR1(A2). The former implies |A2| ≤ |A1| and the latter implies

|A1| ≤ |A2|. So |A1| = |A2|. Similarly, |B1| = |B2|.
Notice m ≤ 2|A1|. If not and m > 2|A1|, then there must exist even integers m′, m′′ < m

such that am′
= am′′

, implying a0 never recurs in the {ak} sequence. This in turn contradicts

the assumption that C is a cycle. Also, m ≥ 2|A1|. If not and m < 2|A1|, then there must

exist some strategy ak ∈ A1 such that a0 appears twice before ak appears once, which is also

a contradiction. So m = 2|A1|. Similarly, n = 2|B2|. Since we just showed |B1| = |B2|, this

means n = 2|B1|.
Case 1: A1 ∩B1 6= ∅. Then there exist indices j, k such that bj = ak. Select any strategy

s1 ∈ A1. Since s1 is infinitely recurrent, there exists some even integer i such that s1 = ak+i.

5



But, since bj+i = ak+i, s1 is also an element of B1. So A1 ⊆ B1. Symmetrically, B1 ⊆ A1.

Hence A1 = B1. Then m = 2|A1| = 2|B1| = n. So lcm(m, n) = m = 2|A1| ≤ 2|S1|. Thus

|C| ≤ 2|S1| ≤ 2(max{lcm(m, n) : m + n ≤ |S1|} ∨ |S1|).
Case 2: A1 ∩ B1 = ∅. Then lcm(m, n) = lcm(2|A1|, 2|B1|) = 2 · lcm(|A1|, |B1|), and

|A1| + |B1| ≤ |S1| since A1 and B1 are disjoint subsets of S1. Thus |C| ≤ lcm(|A1|, |B1|) ≤
2(max{lcm(m, n) : m + n ≤ |S1|} ∨ |S1|).

The genericity assumption cannot be dropped. A game where both players are indifferent

to all outcomes obviously has a cycle that covers the entire strategy space and exceeds the

bound.

The cycle examined at the beginning of this section, the E cycle of Figure 2 falls into the

second case of the proof. The first player’s actions in the top sequence a are disjoint from

his actions in the bottom sequence b.

Corollary 2. If G is generic and |S2| > 2, then no best response cycle will cycle through the

entire strategy space.

Proof. Case 1: |C| ≤ 2|S1| < |S1||S2|. Case 2: |C| ≤ 2· lcm(m,n) ≤ 2mn < m2+2mn+n2 =

(m + n)2 ≤ |S1|2 ≤ |S1||S2|.

Matching Pennies, shown in Figure 1, is often given as an example of a chaotic game.

The best response dynamic cycles through the entire strategy space. The Corollary shows

that Matching Pennies is exceptionally pathological; all games with cycles that cover their

strategy spaces are ordinally equivalent to Matching Pennies. It is still possible for a union

of cycles to cover the strategy space, as the game in Figure 2 demonstrates.

The expression of Proposition 1 is a bit untidy. But, if the game is large enough, the

expression simplifies to a quadratic function of |S1|. The simplification implies that the bound

increases quadratically with the size of the smaller strategy space. It also implies that any

best response cycle will be strictly less than half the size of the entire game: |C| < |S1||S2|
2

.

Corollary 3. If G is generic, then the size of any best response cycle is bounded by

2|S1| if |S1| ≤ 4
|S1|2−1

2
if |S1| > 4 and |S1| odd

|S1|2−2|S1|
2

if |S1| > 4 and |S1| even

Proof. Any two consecutive integers are relatively prime, so lcm(n, n+1) = n(n+1). If |S1|
is odd, then max{lcm(m,n) : m + n ≤ |S1|} = |S1|+1

2
|S1|−1

2
= (|S1|2 − 1)/4. If |S1| is even,

max{lcm(m,n) : m + n ≤ |S1|} = |S1|
2

|S1|−2
2

= (|S1|2 − 2|S1|)/4. Verifying maximality in

either case is straightforward. Since |S1| > 4, either of these quotients is larger than |S1|.
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The final result shows that Proposition 1 cannot be improved. It gives the tightest

possible bound, because there always exists a generic game which achieves the bound. Intu-

itively,if S1 ≤ 4, then the |S1| × |S1| analog to Matching Pennies will satisfy the bound. If

|S1| ≥ 5, select integers m and n which satisfy the bound. Then construct a game with the

m × m analog of Matching Pennies in the northwest portion of the matrix, and the n × n

analog in the southeast portion. This is exactly how the bound is achieved in Figure 2.

Proposition 4. For fixed strategy spaces S1 and S2, there exists a generic game 〈S1, S2, U1, U2〉
with a best response cycle achieving the bound in Proposition 1 and Corollary 3.

Proof. Case 1: max{lcm(m, n) : m + n ≤ |S1|} ≥ |S1|. Let m, n refer to the maximizers.

Then pick two subsets of the first player’s actions R1, T1 ⊂ S1 such that |R1| = m and

|T1| = n. Similarly construct R2, T2 ⊂ S2. Index Ri as r1
i , r

2
i , . . . , r

m
i and Ti as t1i , t

2
i . . . tni .

Set U2(r
k
1 , r

k
2) = 1 and U1(r

k
1 , s2) = 0 for all s2 6= rk

2 . Set U1(r
k+1
1 , rk

2) = 1 and U1(s1, r
k
2) = 0

for all s1 6= rk+1
1 , where we adopt the convention that rm+1

i = r1
i . Similarly construct U2(t

k
1, ·)

and U1(·, tk2), substituting t for s and n for m in the expressions. These utility functions are

generic and the arguments in the proof of Proposition 1 show that these payoffs will produce

a best response cycle of size lcm(m,n).

Case 2: max{lcm(m, n) : m + n ≤ |S1|} < |S1|. Then |S1| ≤ 5 and simple verification

confirms that embedding the S1 × S1 analog of Matching Pennies satisfies the bound.
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