Online Appendix to "Hierarchies of Ambiguous Beliefs"

David S. Ahn*

August 2006

Abstract

Omitted proofs for results in "Hierarchies of Ambiguous Beliefs" [1] are presented.

B Online appendix

Unless explicitly stated otherwise, references to lemmata, proofs, and propositions are to [1].

B.1 Proof of Proposition 9

Let $\bar{H}_1 = \{(A_1, A_2, \ldots) \in H_1 : |A_n(\cdot|B)| = 1, \forall B \in \mathcal{B}\}$, which is also naturally identified as a subset of $\prod_{n=0}^{\infty} \Delta^{\mathcal{B}} X_n$. The proof of [2, Proposition 1] can be applied verbatim to produce a canonical homeomorphism $\bar{f} : \bar{H}_1 \to \Delta^{\mathcal{B}}(S \times H_0)$. Then $\bar{f}^{\mathcal{K}} : \mathcal{K}(\bar{H}_1) \to \mathcal{K}(\Delta^{\mathcal{B}}(S \times H_0))$ is a homeomorphism by Lemma 2. For each compact $K \subseteq \bar{H}_1$, let $G(K) = (\operatorname{Proj}_{\Delta^{\mathcal{B}} X_0}^{\mathcal{K}}(K), \operatorname{Proj}_{\Delta^{\mathcal{B}} X_1}^{\mathcal{K}}(K), \ldots)$. An obvious modification of the proof of Proposition 4 implies that $f = F \circ \bar{f}^{\mathcal{K}} : H_1 \to \mathcal{K}(\Delta^{\mathcal{B}}(S \times H_0))$ is the desired homeomorphism, where $F = G^{-1} : H_1 \to \mathcal{K}(\bar{H}_1)$.

B.2 Proof of Proposition 10

Using arguments similar to Lemmata 3 and 5, we can demonstrate that \bar{H}_1 , hence \bar{H}_m , is closed. Let $\bar{H}_m = \{h \in H_m : f(h) \in \Delta^{\mathcal{B}}(S \times T_0) \text{ and } \bar{H} = \bigcap_{m=1}^{\infty} \bar{H}_m$. A slight notational variation of the proof of [2, Proposition 2] implies that the restriction $\bar{f} : \bar{H} \to \Delta^{\mathcal{B}}(S \times H_\infty)$ is a homeomorphism. By Lemma 2, $\bar{f}^{\mathcal{K}} : \mathcal{K}(\bar{H}) \to \mathcal{K}(\Delta^{\mathcal{B}}(S \times H_\infty))$ is also a homeomorphism. The second paragraph of the proof of Proposition 6 can be obviously modified to show that the restriction $f : H_\infty \to \mathcal{K}(\Delta^{\mathcal{B}}(S \times H_\infty))$ is the desired homeomorphism.

^{*}Department of Economics, University of California, 549 Evans Hall #3880, Berkeley, CA 94720; dahn@econ.berkeley.edu.

B.3 Proof of Proposition 11

Since $\overline{T}_{\infty} = T_{\infty} \cap \overline{T}_0$ is a closed set, Lemma 5 implies each $\mathbf{K}_m(\overline{T}_{\infty})$ is a closed set. Arguments completely analogous to those in the proof of Proposition 6 establish that the restriction of $g : T_{\infty}^{\mathrm{MZ}} \to \Delta(S \times T_{\infty}^{\mathrm{MZ}})$ is a homeomorphism. Now let

$$\bar{T}_1^* = \{ (A_1^*, A_2^*, \ldots) \in T_1^* : |A_n| = 1, \forall n \}$$

$$\bar{T}_{k+1}^* = \{ t^* \in \bar{T}_1^* : g^*(t^*) \subseteq \Delta(S \times \bar{T}_k^*) \}$$

$$\bar{T}_\infty^* = \bigcap_{k=1}^\infty \bar{T}_k^*$$

We will demonstrate that both T_{∞}^{MZ} and Θ_{∞}^{MZ} are homeomorphic to \bar{T}_{∞}^* , hence to each other.

For notational ease, let $\varphi^{MZ} = \varphi_{T_{\infty}^{MZ},g}$ denote the embedding of T_{∞}^{MZ} into T_{∞}^* . We begin by showing $\varphi^{MZ}(T_{\infty}^{MZ}) \subseteq \bar{T}_{\infty}^*$ by induction. Fix $t \in T_{\infty}^{MZ}$. Since $g(t) \in \Delta(S \times T_{\infty})$, $[Q_0 \circ R_0](t) \in \Delta X_0^*$. By canonicity of g^* and the commutativity established in Lemma 13, this suffices to show $[Q_{n-1} \circ R_{n-1} \circ \cdots \circ R_0](t) \in \Delta X_{n-1}^*$, i.e. that $\varphi^{MZ}(t) \in \bar{T}_1^*$. Now suppose $\varphi^{MZ}(T_{\infty}^{MZ}) \subseteq \bar{T}_m^*$. Then $\mathcal{L}_{(\mathrm{Id}_S;\varphi^{MZ})}$ maps $\Delta(S \times T_{\infty}^{MZ})$ into $\Delta(S \times T_m^*)$. Since $g^* \circ \varphi^{MZ} = \mathcal{L}_{(\mathrm{Id}_S;\varphi^{MZ})} \circ g$ and $g(T_{\infty}^{MZ}) = \Delta(S \times T_{\infty}^{MZ})$, this implies $\varphi^{MZ}(T_{\infty}^{MZ}) \subseteq \bar{T}_{m+1}^*$.

Now, fix $(\bar{A}_1^*, \bar{A}_2^*, \ldots) \in \bar{T}_{\infty}^*$. Since g is onto $\Delta(S \times \bar{T}_{\infty})$, we have $[Q_0 \circ R_0](\tilde{T}_{\infty}) \supseteq \operatorname{Proj}_{\mathcal{K}(X_0^*)}(\bar{T}_1^*)$. By canonicity of g^* and Lemma 13, this implies $[Q_{n-1} \circ R_{n-1} \circ \cdots \circ R_0](\tilde{T}_{\infty}) \supseteq \operatorname{Proj}_{\mathcal{K}(X_{n-1}^*)(\bar{T}_n^*)}$. Let $D_n = \{t \in T_{\infty} : [Q_{n-1} \circ R_{n-1} \circ \cdots \circ R_0](t) = \bar{A}_{n+1}^*\}$. Each D_n is closed. Since

$$[Q_{n-1} \circ R_{n-1} \circ \cdots \circ R_0](\bar{T}_{\infty}) \supseteq \operatorname{Proj}_{\mathcal{K}(X_{n-1}^*)}(\bar{T}_n^*) \supseteq \operatorname{Proj}_{\mathcal{K}(X_{n-1}^*)}(\bar{T}_{\infty}^*),$$

each D_n is nonempty. By coherence, $\bigcap_{m \leq n} D_m = D_n$, so $\{D_n\}$ has the finite intersection property. So select any $t^* \in \bigcap_{n=1}^{\infty} D_n$ and t^* satisfies $\varphi^{MZ}(t^*) = (\bar{A}_1^*, \bar{A}_2^*, \ldots)$. Thus φ^{MZ} surjectively maps \bar{T}_{∞} onto \bar{T}_{∞}^* .

Since g is canonical and injective, the argument at the end of the proof of Proposition 7 implies φ^{MZ} is injective. Thus $\varphi^{MZ} : \bar{T}_{\infty} \to \bar{T}_{\infty}^*$ is a continuous bijection between compact sets, thus \bar{T}_{∞} and \bar{T}_{∞}^* are homeomorphic. The same argument, with some notational changes, proves $\varphi_{\Theta_{\infty}^{MZ},g^{MZ}} : \Theta_{\infty}^{MMP} \to \bar{T}_{\infty}^*$ is also a homeomorphism. Hence Θ_{∞}^{MMP} and \bar{T}_{∞} are homeomorphic to each other.

B.4 Proof of Proposition 12

Since $S \times T_{\infty}$ is separable, the set of Dirac measures $\delta(S \times T_{\infty})$ is a closed subset of $\Delta(S \times T_{\infty})$ [3, Theorem 14.8]. Then $\mathcal{K}(\delta(S \times T_{\infty}))$ is a closed subset of $\mathcal{K}(\Delta(S \times T_{\infty}))$. To see this, consider any convergent sequence of sets $K_i \in \mathcal{K}(\delta(S \times T_{\infty}))$ with $K_i \to K$. Pick any point $x \in K$. Since $x \in \lim K_i$, there must exist a sequence of selections $x_i \in K_i$ such that $x_i \to x$. But, since $x_i \in \delta(S \times T_{\infty})$, which is a closed set, we have $x \in \delta(S \times T_{\infty})$. Thus $K \in \mathcal{K}(\delta(S \times T_{\infty}))$. Therefore $T^{\text{MMP}} = g^{-1}(\mathcal{K}(\delta(S \times T_{\infty})))$ is the continuous preimage of a closed set, hence closed. Finally, Lemma 5 implies that $T_{\infty}^{\text{MMP}} = \mathbf{CK}(T^{\text{MMP}})$ is closed. Arguments completely analogous to the proof of Proposition 6 implies the restriction $g: T_{\infty}^{\text{MMP}} \to \mathcal{K}(\delta(S \times T_{\infty}^{\text{MMP}}))$ is a homeomorphism. Recalling that g^* is the canonical homeomorphism from $T_1^* \to \mathcal{K}(\Delta(S \times T_1^*))$, let

$$\begin{split} \tilde{T}_{1}^{*} &= \{(A_{1}^{*}, A_{2}^{*}, \ldots) \in T_{1}^{*} : A_{n}^{*} \in \mathcal{K}(\delta(X_{n-1}^{*})), \forall n\}; \\ \tilde{T}_{k+1}^{*} &= \{t^{*} \in \tilde{T}_{1}^{*} : g^{*}(t^{*}) \subseteq \Delta(S \times \tilde{T}_{k}^{*})\}; \\ \tilde{T}_{\infty}^{*} &= \bigcap_{k=1}^{\infty} \tilde{T}_{k}^{*} \end{split}$$

Now arguments identical to those in the proof of Proposition 11, with appropriate replacements of notation, establish that both \tilde{T}_{∞} and $\tilde{\Theta}_{\infty}$ are homeomorphic to \tilde{T}_{∞}^* , hence to each other.

References

- [1] D. S. Ahn, Hierarchies of ambiguous beliefs, J. Econ. Theory.
- P. Battigalli, M. Siniscalchi, Hierarchies of conditional beliefs and interactive epistemology in dynamic games, J. Econ. Theory 88 (1999) 188–230.
- [3] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, 2nd Edition, Springer, New York, 1999.