Economics 201A Problem Set 1 Due 10 September 2019

1. Consider the following classical condition:

Definition 1. A choice rule C satisfies **path independence** if, for all $A, B \in 2^X \setminus \emptyset$,

$$\mathcal{C}(A \cup B) = \mathcal{C}\big(\mathcal{C}(A) \cup \mathcal{C}(B)\big)$$

- (a) Prove the following claim: If \mathcal{C} is nonempty and rationalizable, then \mathcal{C} satisfies path independence.
- (b) Provide an example of a nonempty choice rule that satisfies path independence, but is not rationalizable.
- 2. The following axiom is another condition proposed by Sen:

Axiom 2 (Sen's γ). If $x \in C(A) \cap C(B)$, then $x \in C(A \cup B)$.

Let X be finite and C be a nonempty choice rule. Prove the following claims:

- (a) If C is rationalizable, then C satisfies Sen's γ .
- (b) If C satisfies Sen's α and Sen's γ , then there exists a (not necessarily transitive) binary relation \succeq on X such that

$$C(A) = \{ x \in A : x \succeq y, \text{ for all } y \in A \}$$

3. Let \succeq be a binary relation on X. The set $Z \subseteq X$ is \succeq -dense if, for all $x, y \in X$, there exists a $z \in Z$ such that $x \succ z \succ y$. Prove that if \succeq is complete and transitive and there exists a countable \succeq -dense set, then there exists a utility representation $u : X \to \mathbb{R}$ of \succeq . (Hint: The proof is very similar to the proof of a utility representation for a weak order on a countable set.)