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Abstract

In house allocation problems, we look for a systematic way of assigning a set of indivis-

ible objects, e.g. houses, to a group of individuals having preferences over these objects.

Typical real life examples are graduate housing, assignment of offices and tasks. Once

an allocation is decided upon, the actual assignments of the agents are not likely to take

place simultaneously. Therefore, rules whose predictions are independent of the sequence

in which the actual assignments are realized turn out to be very appealing. We model this

property via the consistency principle and identify various classes of consistent rules and

correspondences.
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1 Introduction

A house allocation problem is a one-sided matching problem, where a set of agents collectively

own a set of indivisible goods, e.g. houses, and every agent has strict preferences over these

indivisible goods. The number of agents and the number of houses are assumed to be finite

and equal. An allocation is an assignment of the houses to the agents, such that each agent

receives exactly one house. Assignment of dormitory rooms or offices at the beginning of the

academic year are examples of house allocation problems.

The house allocation model is closely related to the housing markets introduced by Shapley

and Scarf (1974). The only difference between the two classes is that, in the latter, each agent

owns one house, whereas in the former, houses are owned collectively. The housing markets

have been thoroughly investigated and many strong results have been obtained concerning

the core (competitive) correspondence. Roth and Postlewaite (1977) show that the core cor-

respondence is singlevalued and Roth (1982) shows that it is strategyproof. Ma (1994) shows

that the core correspondence is the only correspondence that is Pareto optimal, individually

rational and strategyproof. Abdulkadiroğlu and Sönmez (1998) introduce the core from ran-

dom endowments as a lottery mechanism for house allocation problems. They show that the

core from random endowments is equivalent to random serial dictatorship, which formally

establishes the close relationship between the two models1.

In the context of house allocation problems, a correspondence is a map that chooses a set

of allocations for each problem. A rule is a singlevalued correspondence. In this paper, we

identify various classes of consistent and conversely consistent correspondences. Informally,

consistency requires that, if an allocation is chosen for a problem, then for any subgroup of

agents, the restriction of that allocation should be chosen for the smaller problem consisting

of that subgroup and their original assignments. Consistent rules are coherent in their sugges-

tions for problems involving different groups of agents. For example, in n-person bargaining

problems, a rule that selects the egalitarian outcome when n equals 2 and a dictatorial outcome

when n is greater than 2, is quite implausible because it is not consistent. The consistency
1Also see Zhou (1991), Svensson (1997) and Bogomolnaia and Moulin (1999) for more exposition to the

house allocation and the housing market models.
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principle has been analyzed in many contexts, such as game theory, public finance, and fair

allocation.2 As we illustrate in the next paragraph, consistent rules also have a very practical

appeal in classes of resource allocation problems where individuals are likely to receive their

material allocations sequentially. Examples of such classes are two-sided matching, rationing

and house allocation problems. In economies with indivisible goods and money, Tadenuma and

Thomson (1991) identify the correspondences that satisfy no-envy and variants of consistency,

neutrality, and converse consistency. In a large class of two-sided matching problems, Sasaki

and Toda (1992) show that the stable correspondence (the core) is the only correspondence

that satisfies Pareto optimality, anonymity, consistency, and converse consistency. Moulin

(1999) investigates consistent rules in the context of rationing problems.

In the house allocation model, consistency requires that once an allocation is chosen and

a group of agents take their assigned houses before the others, the allocation rule should

not change the assignments of the remaining agents in the reduced problem involving the

remaining agents and houses. For example, suppose that a rule assigning dormitory rooms

to students is not consistent. Then, if some students occupy their rooms before the others,

the rule may require a change in the assignments of the remaining students! Such a change

would not only impose operational and transactional costs, but it would also lead the agents

and the authorities to question the plausibility of the rule. Consistent rules are robust to

non-simultaneous allocations of the houses. Therefore, we believe that consistent rules are

more likely to emerge than ‘inconsistent’ rules.

In a problem where every agent has the same preferences over the houses, every allocation

discriminates between agents. Indeed, there is a one-to-one correspondence between alloca-

tions and priority orderings over the set of individuals, illustrating the impossibility of equal

treatment of equals in this class of problems. For this reason, “sequential solutions” and

“serial dictatorships” constitute a powerful class of rules when randomization or monetary

compensations are not allowed. Given an exogenous priority ordering which may for example

be based on seniority, a serial dictatorship rule sequentially assigns every agent his most pre-

ferred house while respecting earlier assignments. Sequential solutions are a more general class
2A comprehensive survey of consistency for resource allocation problems can be found in Thomson (1996).
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of rules where certain agents receive their least preferred house when their turn comes. Simple

sequential solutions are consistent, conversely consistent, and neutral. In Theorem 1, we show

that simple sequential solutions are the only rules that satisfy a weak form of consistency and

a weak form of neutrality, namely pairwise consistency and pairwise neutrality. Simple serial

dictatorships are Pareto optimal, strategyproof, consistent, conversely consistent, and neutral.

In Corollary 1, we show that simple serial dictatorships are the only rules that are weakly

Pareto optimal, pairwise consistent, and pairwise neutral. Besides its descriptive nature, The-

orem 1 can be interpreted as a negative finding, since dropping efficiency does not allow us to

recover rules having other properties of normative interest. Then, we drop singlevaluedness.

In Proposition 5, we show that anonymous correspondences are not very appealing even in the

multivalued case. In Corollary 2, we characterize Pareto optimal, consistent, and conversely

consistent correspondences via their behavior in two-person problems. Finally, in Theorem

2, we show that a correspondence is nonempty valued, Pareto optimal, consistent, conversely

consistent, and neutral if and only if it can be written as a union of serial dictatorships in a

particular manner. Precise definitions of the above concepts are provided in the next section.

The third section contains the results and the fourth section presents the concluding remarks.

The independence of axioms and part of proofs are deferred to the appendix.

2 Environments

Let N be a set of potential agents and H a set of potential houses such that |N | ≥ 3

and |H| ≥ 3. A house allocation problem or simply a problem is a triplet E = (N,H, (Ri)i∈N )

where ∅ 6= N ⊂ N , ∅ 6= H ⊂ H, |N | = |H| is finite, and for each i ∈ N , Ri is a linear order

on H representing agent i’s preference over the houses in H.3 For each i ∈ N , Pi denotes the

asymmetric part of Ri.4

Given a problem E = (N,H, (Ri)i∈N ), an allocation µ : N → H is a bijection, where µ(i)
3A binary relation Ri on H is a linear order if it is reflexive (∀a ∈ H : aRia), complete (∀a, b ∈ H : a 6=

b =⇒ aRib or bRia), transitive (∀a, b, c ∈ H : aRib and bRic =⇒ aRic) and antisymmetric (∀a, b ∈ H : aRib

and bRia =⇒ a = b). Indifference between different houses is not allowed.
4For any a, b ∈ H, we say aPib if and only if aRib and not bRia. In general, a relation Pi on H is

asymmetric if for any a, b ∈ H, aPib implies not bPia.
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denotes the house assigned to agent i.

Let E = (N,H, (Ri)i∈N ) be any problem, µ any allocation for E and i, j ∈ N any two

agents. We say that i envies j under µ if µ(j) Pi µ(i).

An allocation correspondence, or simply a correspondence, is a map ϕ which associates

with each problem a possibly empty set of allocations for that problem. An allocation rule, or

simply a rule, is a map ϕ which associates with each problem exactly one allocation for that

problem. A rule is a singlevalued correspondence.

Given a problem E = (N,H, (Ri)i∈N ), an allocation µ′ for E weakly Pareto dominates

another allocation µ for E if every agent in N is weakly better off and at least one agent is

strictly better off under µ′ than under µ. The allocation µ′ strongly Pareto dominates µ for

E if every agent in N is strictly better off under µ′ than under µ. The Pareto correspondence

associates with each problem the set of allocations that are not weakly Pareto dominated. The

weak Pareto correspondence associates with each problem the set of allocations that are

not strongly Pareto dominated. A correspondence is Pareto optimal if it never chooses

allocations that are weakly Pareto dominated. Similarly, a correspondence is weakly Pareto

optimal if it never chooses allocations that are strongly Pareto dominated.

Abdulkadiroğlu and Sönmez (1998) show that serial dictatorships lead to Pareto optimal

allocations. Serial dictatorships can be considered as the Pareto optimal subclass of a more

general class of rules that we call sequential solutions. Given a problem E = (N,H, (Ri)i∈N ), a

linear order � on N and a subset M ⊂ N , the sequential allocation induced by � and M

for E is defined inductively as follows. Let ik be the kth person from the top in N w.r.t. �.

First, if i1 ∈ M , then i1 is allocated his top-ranked house in H, otherwise i1 is allocated his

bottom-ranked house in H. At the kth step, if ik ∈ M , then ik is allocated his top-ranked

house among those that are not already allocated in earlier steps, otherwise ik is allocated his

bottom-ranked house among the remaining ones. The set M identifies the set of agents whose

welfares are maximized by the sequential solution. Let in be the bottom-ranked person in N

w.r.t. �. Note that the sequential allocation induced by � and M will be the same, whether

in ∈ M or not. Moreover, if M ⊃ N \ {in}, then the above sequential solution corresponds

with the serial dictatorship induced by �. Formally, given a problem E = (N,H, (Ri)i∈N )
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and a linear order � on N , the serial dictatorship allocation induced by � for E is the

sequential allocation induced by � and N for E . Conversely, a sequential allocation coincides

with the serial dictatorship allocation where the preferences of the agents in N \M are turned

upside-down.

We next introduce natural extensions of sequential solutions to the variable population

case. For any linear order � on N and any ∅ 6= N ⊂ N , let � |N be the restriction of �

to N . A rule is a simple sequential solution if there exists a linear order � on N and a

subset M⊂ N such that for any problem E = (N,H, (Ri)i∈N ), the rule selects the sequential

allocation induced by � |N and M∩N . In this case, the rule is denoted by ϕ�,M.5 A rule is

a simple serial dictatorship if it coincides with ϕ�,N for some linear order � on N . For

simplicity, we will denote such a rule by ϕ�.

For any problem E = (N,H, (Ri)i∈N ), any ∅ 6= N ′ ⊂ N and any allocation µ for E , the

reduced problem of E w.r.t. N ′ at µ is:

rµ
N ′(E) =

(
N ′, µ(N ′),

(
Ri|µ(N ′)

)
i∈N ′

)
where µ(N ′) is the set of remaining houses after the agents in N \ N ′ have left with their

assigned houses, and Ri|µ(N ′) is the restriction of agent i’s preference to the remaining houses.

The reduced allocation w.r.t. N ′, µN ′ : N ′ → µ(N ′) is the bijection defined by µN ′(i) = µ(i),

for each i ∈ N ′.

A correspondence ϕ is consistent if for any problem E = (N,H, (Ri)i∈N ), any ∅ 6=

N ′ ⊂ N and any µ ∈ ϕ(E), one has µN ′ ∈ ϕ(rµ
N ′(E)). Note that the union of consistent

correspondences is consistent. A correspondence ϕ is pairwise consistent if for any problem

E = (N,H, (Ri)i∈N ), any N ′ ⊂ N with |N ′| = 2 and any µ ∈ ϕ(E), one has µN ′ ∈ ϕ(rµ
N ′(E)).

It is conversely consistent if for any problem E = (N,H, (Ri)i∈N ) with |N | ≥ 2 and any

allocation µ for E such that for any N ′ ⊂ N with |N ′| = 2 we have µN ′ ∈ ϕ(rµ
N ′(E)), we

have µ ∈ ϕ(E).6 By changing set memberships to equalities, one obtains the definitions of

consistency, pairwise consistency and converse consistency for rules.
5Since agents have strict preferences, given a linear order �, a subset M⊂ N and a problem E , there exists

a unique sequential allocation induced by � |N and M∩N for E . Therefore, ϕ�,M is well defined as a rule.
6An alternative definition of converse consistency would require that if for any proper subset N ′ of N

with |N ′| ≥ 2, one has µN′ ∈ ϕ(rµ
N′(E)) then µ ∈ ϕ(E). These two definitions turn out to be equivalent in
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Anonymity requires that a correspondence should be independent of the names of the

agents. More precisely, a correspondence ϕ is anonymous if for any ∅ 6= H ⊂ H, any two

problems E = (N,H, (Ri)i∈N ), E ′ = (N ′,H, (R′
i)i∈N ′) and any µ ∈ ϕ(E), if π : N → N ′ is a

bijection satisfying:

∀i ∈ N, ∀a, b ∈ H : aRib ⇐⇒ aR′
π(i)b,

then µ ◦ π−1 ∈ ϕ(E ′).

Neutrality requires that a correspondence should be independent of the particular labeling

of the houses. More precisely, a correspondence ϕ is neutral if for any ∅ 6= N ⊂ N , any two

problems E = (N,H, (Ri)i∈N ), E ′ = (N,H ′, (R′
i)i∈N ) and any µ ∈ ϕ(E), if π : H → H ′ is a

bijection satisfying:

∀i ∈ N, ∀a, b ∈ H : aRib ⇐⇒ π(a)R′
iπ(b),

then π ◦µ ∈ ϕ(E ′). By changing the quantifier “for any ∅ 6= N ⊂ N” to “for any N ⊂ N with

|N | = 2”, we obtain the definition of pairwise neutrality.

3 Results

Thomson (1998) points out that the Pareto correspondence is consistent in allocation problems

where goods are privately appropriable. We start by noting this in our special context of house

allocation problems.

Proposition 1 The Pareto correspondence is consistent.

The following proposition asserts that the Pareto correspondence is not conversely consis-

tent. It is analogous to Tadenuma and Thomson’s (1991) result about the lack of converse

consistency of the Pareto correspondence in economies with indivisible goods and money.

the context of house allocation problems. It is straightforward to check the equivalence of these definitions

via induction on the number of players, by using the following two transitivity properties of reduction: if

∅ 6= N ′′ ⊂ N ′ ⊂ N , E = (N, H, (Ri)i∈N ) is a problem and µ is an allocation for E then r
µN′
N′′

(
rµ

N′ (E)
)

= rµ
N′′ (E)

and (µN′)N′′ = µN′′ . By using the same properties, one can also show that pairwise consistency and converse

consistency imply consistency. The latter statement is a direct consequence of Lemma 2. Thomson (1996)

points out that in any class of allocation problems where admissible problems involve finitely many agents and

reduction is transitive, the two forms of converse consistency are equivalent.
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Proposition 2 The Pareto correspondence is not conversely consistent. The weak Pareto

correspondence is neither pairwise consistent nor conversely consistent.

Proof Let 1, 2, 3 be three distinct potential agents and a, b, c three distinct potential

houses. To see that the Pareto correspondence is not conversely consistent, consider the

following problem E :

P1 P2 P3

a c b

b a c

c b a

Let µ be the allocation corresponding to the underlined selection. Note that for any

{i, j} ⊂ {1, 2, 3} with i 6= j, the allocation µ{i,j} is chosen by the Pareto correspondence in the

reduced problem rµ
{i,j} (E). Thus, if the Pareto correspondence were conversely consistent, then

µ should be in the set of Pareto optimal allocations for E . However, µ is strongly and therefore

weakly Pareto dominated in E , so it is not in the Pareto correspondence for E , showing that

the Pareto correspondence is not conversely consistent. The same example shows that the

weak Pareto correspondence is not conversely consistent.

To see that the weak Pareto correspondence is not pairwise consistent, consider the fol-

lowing problem E :

P1 P2 P3

a c b

b b c

c a a

Let µ be the allocation corresponding to the underlined selection. The allocation µ is

not strongly Pareto dominated in E , therefore it is in the weak Pareto correspondence for E .

However, the reduced allocation µ{2,3} is strongly Pareto dominated in the reduced problem

rµ
{2,3} (E) , thus µ{2,3} is not in the weak Pareto correspondence for rµ

{2,3} (E), showing that the

weak Pareto correspondence is not pairwise consistent. 2
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For any i ∈ N , any linear order � on N and any ∅ 6= N ⊂ N , let L(i,�, N) = {j ∈ N |i �

j}. A property that characterizes serial dictatorships in the context of assignment problems

is that an agent never envies those who are ranked below him in the serial dictatorship order.

This idea is generalized to sequential solutions in the following lemma.

Lemma 1 Let E = (N,H, (Ri)i∈N ), M ⊂ N and let � be a linear order on N . An allocation

µ for E is the sequential allocation induced by � and M for E if and only if the following

are true:

1. µ(i) Ri µ(j) for any i ∈ N ∩M and any j ∈ L(i,�, N),

2. µ(j) Ri µ(i) for any i ∈ N \M and any j ∈ L(i,�, N).

Proof Let E = (N,H, (Ri)i∈N ), M ⊂ N and let � be a linear order on N .

First, assume that µ is the sequential allocation induced by � and M for E . Let i ∈ N

and j ∈ L(i,�, N). Since i � j, j does not come before i in the sequential solution order.

Therefore, µ(j) is not previously allocated at the step when i receives his house. If i ∈ M ,

then µ(i) is the top-ranked house among the remaining ones w.r.t. Ri, at the step when i’s

assignment is made. In particular, µ(i) Ri µ(j). Similarly, if i /∈ M , then µ(i) is the bottom-

ranked house among the remaining ones w.r.t. Ri, at the step when i’s assignment is made.

In particular, µ(j) Ri µ(i).

For the converse, assume that the allocation µ for E is such that Conditions 1 and 2 are

satisfied. For each k ∈ {1, . . . , |N |}, let ik ∈ N be the kth person from the top in N

w.r.t. �. Let k ∈ {1, . . . , |N |} and a ∈ {µ(ik), µ(ik+1), . . . , µ(i|N |)}. Then a = µ(j)

for some j ∈ L(ik,�, N). Therefore, if ik ∈ M , we have µ(ik) Rik a by Condition 1, and

µ(ik) is the top-ranked house in {µ(ik), µ(ik+1), . . . , µ(i|N |)} w.r.t. Rik . Similarly, if ik /∈

M , by Condition 2, we have that a Rik µ(ik), and µ(ik) is the bottom-ranked house in

{µ(ik), µ(ik+1), . . . , µ(i|N |)} w.r.t. Rik . So, initially, if i1 ∈ M , then i1 receives his top-

ranked house in H. Otherwise, he receives his bottom-ranked house in H. At the kth step,

if ik ∈ M , then ik receives his top-ranked house among those that are not already allocated

in earlier steps, otherwise ik receives his bottom-ranked house among the remaining ones.

Therefore, µ is the sequential allocation induced by � and M for E . 2
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Proposition 3 Simple sequential solutions are consistent, conversely consistent, and neutral.

We omit the proof of Proposition 3 since it is straightforward using Lemma 1.

Proposition 4 Simple serial dictatorships are Pareto optimal, consistent, conversely consis-

tent, and neutral.

Proof By Abdulkadiroğlu and Sönmez (1998), serial dictatorships lead to Pareto optimal al-

locations. Therefore, simple serial dictatorships are Pareto optimal. The other claims directly

follow from Proposition 3. 2

Theorem 1 If a rule is pairwise consistent and pairwise neutral, then it is a simple sequential

solution.

Proof Let ϕ be any pairwise consistent and pairwise neutral rule. Let a, b ∈ H be two distinct

houses and i, j ∈ N two distinct agents. Let the problems E1 and E2 be as follows:

E1

P 1
i P 1

j

a a

b b

E2

P 2
i P 2

j

a b

b a

Depending on the values that ϕ takes (the underlined selections below) in the problems E1

and E2, exactly one of the following four cases prevails:

•Case 1: i � j

P 1
i P 1

j

a a

b b

P 2
i P 2

j

a b

b a

•Case 2: i � j

P 1
i P 1

j

a a

b b

P 2
i P 2

j

a b

b a

•Case 3: j � i

P 1
i P 1

j

a a

b b

P 2
i P 2

j

a b

b a

•Case 4: j � i

P 1
i P 1

j

a a

b b

P 2
i P 2

j

a b

b a

By the pairwise neutrality assumption, the four cases above are independent of the choice of

houses a and b. Therefore, we have:

•Case 1: i � j In any problem E involving i and j, i does not envy j under ϕ(E).
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Indeed, suppose that there exists a problem E = (N,H, (Ri)i∈N ) involving i and j, such

that i envies j under µ = ϕ(E). Then, µ(j) Pi µ(i), i.e. µ{i,j}(j) Pi|µ({i,j}) µ{i,j}(i). In

conjunction with the pairwise consistency of ϕ, this implies that one of the following cases

prevails in the reduced problem rµ
{i,j}(E):

Pi|µ({i,j}) Pj |µ({i,j})

µ{i,j}(j) µ{i,j}(j)

µ{i,j}(i) µ{i,j}(i)

Pi|µ({i,j}) Pj |µ({i,j})

µ{i,j}(j) µ{i,j}(i)

µ{i,j}(i) µ{i,j}(j)

’

where the underlined allocations represent ϕ’s selection for the reduced problem. In either

case, we obtain a contradiction to i � j by setting a = µ{i,j}(j) and b = µ{i,j}(i).

•Case 2: i � j In any problem E involving i and j, i envies j under ϕ(E).

Suppose that there exists a problem E = (N,H, (Ri)i∈N ) involving i and j, such that i

does not envy j under µ = ϕ(E). Then, µ(i) Pi µ(j), i.e. µ{i,j}(i) Pi|µ({i,j}) µ{i,j}(j). By

pairwise consistency of ϕ, one of the following cases prevails in the reduced problem rµ
{i,j}(E):

Pi|µ({i,j}) Pj |µ({i,j})

µ{i,j}(i) µ{i,j}(i)

µ{i,j}(j) µ{i,j}(j)

Pi|µ({i,j}) Pj |µ({i,j})

µ{i,j}(i) µ{i,j}(j)

µ{i,j}(j) µ{i,j}(i)

,

where the underlined allocations represent ϕ’s selection for the reduced problem. In either

case, we obtain a contradiction to i � j by setting a = µ{i,j}(i) and b = µ{i,j}(j).

The two other cases are exactly symmetric. Since the four cases considered are independent

of the choice of houses a and b, we can define a reflexive relation � on N by letting i � j

if and only if i � j or i � j, for any two distinct i, j ∈ N . The relation � is complete

since one of the four cases prevails and it is antisymmetric since the four cases are mutually

exclusive. Moreover, it is shown in the appendix that for any three distinct agents i, j, k ∈ N ,

the following implications hold:

(
i � j and j � k =⇒ i � k

)
and (i � j and j � k =⇒ i � k) .

In particular, the relation � is transitive. Therefore, � is a linear order on N .
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Let i ∈ N not be the minimal element7 of N w.r.t. �. Then, there exists k ∈ L(i,�,N )

with i � k.8 Let j ∈ L(i,�,N ) such that j 6= k and i � j, then:

• i � k =⇒ i � j: Suppose that i � k. If k � j, we immediately have that i � j. Otherwise if

j � k, suppose that it is not true that i � j. But then since i � j, we must have i � j. Along

with j � k, this implies that i � k, a contradiction. Therefore, i � j.

• i � k =⇒ i � j: Suppose that i � k. Similarly, if k � j, we immediately have that i � j.

Otherwise if j � k, suppose that it is not true that i � j. But then since i � j, we must have

i � j. Along with j � k, this implies that i � k, a contradiction. Therefore, i � j.

Therefore, we may validly define the set M ⊂ N as follows. If there exists a minimal

element of N w.r.t. �, let it belong to M. For any other i ∈ N , let i ∈M if and only if i � k

for some—or for any k ∈ L(i,�,N ) with i � k.

Finally, let E = (N,H, (Ri)i∈N ), i ∈ N , j ∈ L(i,�, N) and µ = ϕ(E). If i = j then

µ(i) = µ(j) and therefore µ(i) Ri µ(j) and µ(j) Ri µ(i). Otherwise i 6= j, so we have i � j.

In this case, if i ∈ N ∩M then by construction i � j, i.e. i never envies j, i.e. µ(i) Ri µ(j).

Otherwise if i ∈ N \M then by construction i � j, i.e. i always envies j, i.e. µ(j) Ri µ(i).

By Lemma 1, µ is the sequential allocation induced by � |N and M∩N for E . Therefore, ϕ

is the simple sequential solution induced by � and M. 2

Corollary 1 If a rule is weakly Pareto optimal, pairwise consistent, and pairwise neutral,

then it is a simple serial dictatorship.

Proof Let ϕ be a weakly Pareto optimal, pairwise consistent, and pairwise neutral rule. By

Theorem 1, ϕ is a simple sequential solution, i.e. there exists � and M ⊂ N such that

ϕ = ϕ�,M. Suppose that ϕ 6= ϕ�. Then there exists i ∈ N \M such that i is not the minimal

element in N w.r.t. �. Let j ∈ N be such that i � j and let the problem E be as follows:
7For any i ∈ N , i is the minimal element of N w.r.t. �, if for any j ∈ N , we have j � i. For the case when

N is finite, this is equivalent to saying that i is the bottom-ranked agent in N w.r.t. �. By the antisymmetry

of �, there exists at most one minimal element of N w.r.t. �.
8� is used to denote the asymmetric part of �.
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Pi Pj

a b

b a

Since i /∈M, under the allocation ϕ(E) = ϕ�,M(E), agents i and j receive b and a, respectively.

However, both are made strictly better off by exchanging their assigned houses, a contradiction

to ϕ being weakly Pareto optimal. Therefore, ϕ = ϕ�. 2

The Pareto correspondence is anonymous but not conversely consistent. The next propo-

sition shows that there does not exist a nonempty valued correspondence that is weakly Pareto

optimal, anonymous, and conversely consistent.

Proposition 5 Any nonempty valued, anonymous, and conversely consistent correspondence

is not weakly Pareto optimal.

Proof Let ϕ be a nonempty valued, anonymous, and conversely consistent correspondence.

Then, for any distinct i, j ∈ N and a, b ∈ H, the correspondence ϕ will choose both allocations

from the problem:

Pi Pj

a a

b b

since it is nonempty valued and anonymous. By converse consistency of ϕ, the underlined

allocation µ will be chosen by ϕ from the following problem E :

P1 P2 P3

a c b

b a c

c b a

Note that the allocation µ is strongly Pareto dominated in E , showing that ϕ is not weakly

Pareto optimal. 2

For any correspondence or rule ϕ, let ϕ|2 be its restriction to two-person problems. A

correspondence ϕ is an extension of a correspondence ϕ defined for two-person problems if

13



ϕ|2 = ϕ. The following lemma states that consistent and conversely consistent correspondences

are characterized by their restrictions to two-person problems.

Lemma 2 For any correspondence ϕ defined for two-person problems, there exists a consis-

tent and conversely consistent extension ϕ that is unique up to one-person problems.9 The

extension ϕ is defined as follows. For any problem E = (N,H, (Ri)i∈N ) with |N | ≥ 2 and for

any allocation µ for E:

µ ∈ ϕ(E) ⇐⇒ ∀N ′ ⊂ N with |N ′| = 2 : µN ′ ∈ ϕ
(
rµ
N ′(E)

)
.

In particular, any consistent and conversely consistent correspondence ϕ is expressed as in

above where ϕ = ϕ|2.

Proof Let ϕ be any correspondence defined for two-person problems. Let the correspondence

ϕ be defined as in above for problems involving more than one person and W.L.O.G. let ϕ

select the unique allocation in one-person problems. Since ϕ = ϕ|2, ϕ is conversely consistent

by definition. To see that ϕ is consistent, let E = (N,H, (Ri)i∈N ), ∅ 6= N ′ ⊂ N and µ ∈ ϕ(E).

Assume W.L.O.G. that |N ′| ≥ 2. Consider the reduced problem E ′ = rµ
N ′ (E) and the allocation

µN ′ for E ′. For any N ′′ ⊂ N ′ with |N ′′| = 2, we have (µN ′)N ′′ = µN ′′ ∈ ϕ
(
rµ
N ′′(E)

)
=

ϕ
(
rµ
N ′′(E)

)
= ϕ

(
r
µN′
N ′′

(
rµ
N ′(E)

))
= ϕ

(
r
µN′
N ′′ (E ′)

)
, since N ′′ ⊂ N with |N ′′| = 2 and µ ∈ ϕ(E).

Therefore, by definition of ϕ, we have µN ′ ∈ ϕ(E ′) = ϕ
(
rµ
N ′(E)

)
, showing that ϕ is consistent.

To show uniqueness of ϕ up to one-person problems, let ϕ′ be any other consistent and

conversely consistent extension of ϕ. Consistency of ϕ′ requires that ϕ′ ⊂ ϕ. Similarly,

converse consistency of ϕ′ requires that ϕ ⊂ ϕ′ in problems involving more than one person,

showing the uniqueness of the extension up to one-person problems.10

Any consistent and conversely consistent correspondence ϕ is in particular a consistent

and conversely consistent extension of ϕ|2. By uniqueness of the consistent and conversely
9In other words, if there exist two different consistent and conversely consistent extensions of ϕ, they would

only differ in their selections from one-person problems.
10The proof of the uniqueness part makes implicit use of the “Elevator Lemma” in Thomson (1998). The

Elevator Lemma states that if ϕ|2 ⊂ ϕ′|2, ϕ is consistent and ϕ′ is conversely consistent, then ϕ ⊂ ϕ′ up to

one-person problems.
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consistent extension of ϕ|2 up to one-person problems, ϕ is expressed as in above where

ϕ = ϕ|2. 2

For any correspondence ϕ defined for two-person problems, let Ext (ϕ) be the consistent

and conversely consistent extension of ϕ selecting the unique allocation in one-person problems.

The correspondence Ext (ϕ) is uniquely defined by Lemma 2. For any two correspondences

ϕ and ϕ′ defined for two-person problems such that ϕ ⊂ ϕ′, we have Ext (ϕ) ⊂ Ext (ϕ′). In

particular, if {ϕα}α∈I is any collection of correspondences defined for two-person problems,

we have: ⋃
α∈I

Ext (ϕα) ⊂ Ext

(⋃
α∈I

ϕα

)
.

Moreover, for any linear order � on N and any M⊂ N , we have:

Ext
(
ϕ�,M|2

)
= ϕ�,M,

by Proposition 3 and Lemma 2.

Let {�a,b}(a,b)∈H×H be an indexed family of relations on N . The family {�a,b}(a,b)∈H×H

is 3+–acyclic if there do not exist distinct elements i1, i2, . . . , in ∈ N and a1, a2, . . . , an ∈ H

with n ≥ 3 such that i1 �a1,a2 i2 �a2,a3 . . . �an−1,an in �an,a1 i1.

For any correspondence ϕ defined for two-person problems, we can naturally induce a

family of relations {�a,b}(a,b)∈H×H on N as follows. For any a, b ∈ H, if a = b, let �a,b= ∅,

otherwise if a 6= b, let �a,b be the reflexive relation such that for any distinct i, j ∈ N , we

have i �a,b j if and only if ϕ chooses the underlined allocation from the following problem:

Pi Pj

a a

b b

Lemma 3 If a Pareto optimal and conversely consistent correspondence ϕ is such that ϕ|2

is nonempty valued, then ϕ|2 induces a 3+–acyclic family of relations on N . Conversely, for

any consistent correspondence ϕ such that ϕ|2 induces a 3+–acyclic family of relations on N

and is Pareto optimal, the correspondence ϕ is Pareto optimal.
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We defer the proof of Lemma 3 to the appendix. A restatement of Lemma 3 gives us the

following characterization of Pareto optimal, consistent, and conversely consistent correspon-

dences.

Corollary 2 A correspondence ϕ is nonempty valued in one and two-person problems, Pareto

optimal, consistent, and conversely consistent if and only if ϕ = Ext (ϕ) for some nonempty

valued and Pareto optimal correspondence ϕ defined for two-person problems that induces a

3+-acyclic family of relations on N .

A relation � on N is 3+–acyclic if there do not exist distinct elements i1, i2, . . . , in ∈ N

with n ≥ 3 such that i1 � i2 � . . . � in � i1. Any complete and 3+–acyclic relation is

transitive. A transitive relation is 3+–acyclic if and only if its indifference classes are of size

smaller than 3. For any complete and 3+–acyclic relation � on N , let ϕ� be the nonempty

valued, Pareto optimal and neutral correspondence defined for two-person problems, such that

for any two distinct agents i, j ∈ N and any problem E of type:

Pi Pj

a a

b b

the set ϕ�(E) contains the underlined allocation if and only if i � j. In this case, the family

of relations {�a,b}(a,b)∈H×H induced by ϕ� are such that for any distinct a, b ∈ H, we have

�a,b=�.

By the axiom of choice, for any reflexive, complete, and 3+–acyclic relation � on N , there

exists a linear order �′⊂�. If � has n indifference classes of size 2, then there exist exactly 2n

such linear orders. For example, whenN = {i1, i2, i3, i4, i5, i6} with |N | = 6, a typical reflexive,

complete and 3+–acyclic relation � on N and the 4 linear orders �1, �2, �3, �4 ⊂ �

obtained by arbitrarily breaking indifferences in � are depicted as follows:
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�

i3 i6

i2

i1 i5

i4

�1 �2 �3 �4

i3 i3 i6 i6

i6 i6 i3 i3

i2 i2 i2 i2

i1 i5 i1 i5

i5 i1 i5 i1

i4 i4 i4 i4

.

We also have that ϕ� = ϕ�1 |2 ∪ ϕ�2 |2 ∪ ϕ�3 |2 ∪ ϕ�4 |2.

Lemma 4 A correspondence ϕ is nonempty valued, Pareto optimal, consistent, conversely

consistent, and neutral if and only if there exists a reflexive, complete, and 3+–acyclic relation

� on N such that ϕ = Ext
(
ϕ�
)
.

We defer the proof of Lemma 4 to the appendix. The following theorem states that

a correspondence is nonempty valued, Pareto optimal, consistent, conversely consistent, and

neutral if and only if it can be expressed as a union of simple serial dictatorships in a particular

manner.

Theorem 2 A correspondence ϕ is nonempty valued, Pareto optimal, consistent, conversely

consistent, and neutral if and only if there exists a reflexive, complete, and 3+–acyclic relation

� on N such that:

ϕ =
⋃
α∈I

ϕ�α ,

where {�α}α∈I is the set of linear orders contained in �.

Proof Let � be any reflexive, complete, and 3+–acyclic relation on N and let {�α}α∈I be

the set of linear orders contained in �. We will show that

Ext
(
ϕ�
)

=
⋃
α∈I

ϕ�α .

This will prove the theorem, by Lemma 4. We already know that

ϕ� =
⋃
α∈I

ϕ�α |2 =

(⋃
α∈I

ϕ�α

)
|2.
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By showing that
⋃

α∈Iϕ
�α is consistent and conversely consistent, we will have that

⋃
α∈Iϕ

�α is

a consistent and conversely consistent extension of ϕ�, which will imply the desired equality, by

Lemma 2. By Proposition 3, simple serial dictatorships are consistent. Therefore,
⋃

α∈Iϕ
�α

is consistent as a union of consistent correspondences. To see that
⋃

α∈Iϕ
�α is conversely

consistent, let E = (N,H, (Ri)i∈N ) with |N | ≥ 2 and let µ be an allocation for E , such that

for any N ′ ⊂ N with |N ′| = 2, we have µN ′ ∈
⋃

α∈Iϕ
�α(rµ

N ′(E)). So, for any {i, j} ⊂ N

with i 6= j, we can choose α{i,j} ∈ I such that µ{i,j} ∈ ϕ
�α{i,j} (rµ

{i,j}(E)). Hence, we can

define a reflexive and complete relation �′ on N , such that for any distinct i, j ∈ N , we have

i �′ j if and only if i �α{i,j} j. Then, �′ is 3+–acyclic, since �′⊂
⋃

α∈I (�α |N ) =� |N . Also

note that �′ is transitive, since it is complete and 3+–acyclic. Moreover, since each �α{i,j} is

antisymmetric, we have that �′ is antisymmetric, showing that �′ is a linear order on N . Since

�′⊂� |N , there exists β ∈ I such that �′=�β |N . Moreover, since µ is the serial dictatorship

allocation induced by �′ for E , for any N ′ ⊂ N with |N ′| = 2, we have µN ′ = ϕ�β (rµ
N ′(E)).

But then, since ϕ�β is a simple serial dictatorship, it is conversely consistent, therefore we

have {µ} = ϕ�β (E) ⊂
⋃

α∈Iϕ
�α(E), showing that

⋃
α∈Iϕ

�α is conversely consistent. 2

4 Concluding remarks

This paper investigates the role of the consistency principle in house allocation problems.

Classes of allocation rules and correspondences satisfying consistency and its converse are

identified. The class of rules satisfying weak forms of efficiency, consistency, and neutrality

are characterized by serial dictatorships where each agent is assigned his best house, following

a sequence determined by an exogenous priority ordering. The more general class of consistent

and neutral rules turn out to be characterized by sequential solutions generalizing serial dicta-

torships, where certain agents receive their least preferred house when their turn comes. The

latter result is negative in the sense that one can not recover other properties of interest by

dropping the efficiency axiom. The impossibilities concerning anonymity and equal treatment

of equals remain present even in the case of multivalued correspondences.
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5 Appendix

5.1 Independence of Axioms

Let N = {1, 2, 3} and H = {a, b, c} with |N | = |H| = 3 in the following examples which

establish the independence of axioms in Theorem 1 and Corollary 1.

(i) Let ϕ select the serial dictatorship allocation induced by the order �: 1 � 2 � 3 in three-

person problems, and the serial dictatorship allocation induced by the order �′: 2 �′ 1 �′ 3

in all other problems. The rule ϕ is Pareto optimal and neutral. To see that ϕ is not pairwise

consistent, consider the problem E depicted below:

P1 P2 P3

a a a

b b b

c c c

Note that ϕ chooses the underlined allocation µ for E . Let µ′ = ϕ
(
rµ
{1,2}(E)

)
, then µ′(1) =

b 6= a = µ{1,2}(1), i.e., ϕ
(
rµ
{1,2}(E)

)
= µ′ 6= µ{1,2}. Therefore, ϕ is not pairwise consistent.

(ii) Let �: 1 � 2 � 3 and consider the simple sequential solution ϕ�,∅. By Proposition 3, ϕ�,∅

is neutral and consistent. To see that ϕ�,∅ is not weakly Pareto optimal consider the following

problem E :

P1 P2

a b

b a

where the underlined allocation ϕ�,∅(E) is strongly Pareto dominated in E .

(iii) Let �: 1 � 2 � 3 and �′: 2 �′ 1 �′ 3. At each E = (N,H, (Ri)i∈N ), define the

allocation rule ϕ by ϕ(E) = ϕ�(E) if 1, 2 ∈ N , a ∈ H and both 1 and 2 rank a in the

top, and ϕ(E) = ϕ�
′
(E) otherwise. The rule ϕ is Pareto optimal, consistent, and conversely

consistent.11 Consider the underlined selections of ϕ from the following problems:
11Gibbard (1973) and Satterthwaite (1975) show that for a large class of social choice functions, strategyproof-

ness is equivalent to dictatorship. However, note that ϕ above is strategyproof but not dictatorial, showing that

strategyproofness does not imply dictatorship in the context of house allocation problems. The rule ϕ is the
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E

P1 P2

a a

b b

E ′

P ′
1 P ′

2

b b

a a

Let µ = ϕ(E) and µ′ = ϕ(E ′). Agent 1 is assigned a under µ. Therefore, if ϕ is pairwise

neutral, agent 1 should be assigned b under µ′, but this is not the case. Thus, ϕ is not pairwise

neutral.

5.2 Proofs

Proof (Part of Theorem 1) Let a, b, c ∈ H be three distinct houses and let i, j, k ∈ N be

any three distinct agents. Then,

i � j and j � k =⇒ i � k:

Suppose that i � j and j � k. Then, in any problem involving i, j and k, we have that i

does not envy j and j does not envy k. Consider the following problem E and the underlined

allocation µ:

Pi Pj Pk

a a a

b b b

c c c

Note that µ is the unique allocation for E under which i does not envy j and j does not envy

k. Therefore, µ = ϕ(E). Consider the reduced problem rµ
{i,k}(E):

Pi Pk

a a

c c

By pairwise consistency of ϕ, the underlined selection µ{i,k} ∈ ϕ
(
rµ
{i,k}(E)

)
. Therefore, either

i � k or k � i.

Consider the following problem E and the underlined allocation µ:

variable population extension of a “hierarchical exchange function”, introduced in Papai (1997) and of a “top

trading cycles mechanism”, introduced in Abdulkadiroğlu and Sönmez (1999).
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Pi Pj Pk

a a c

b b b

c c a

Note that µ is the unique allocation for E under which i does not envy j and j does not envy

k. Therefore, µ = ϕ(E). Consider the reduced problem rµ
{i,k}(E):

Pi Pk

a c

c a

By pairwise consistency of ϕ, the underlined selection µ{i,k} ∈ ϕ
(
rµ
{i,k}(E)

)
. Therefore, either

i � k or k � i. By the above paragraph, i � k.

Similarly, one can show that (i � j and j � k =⇒ i � k), (i � j and j � k =⇒ i � k)

and (i � j and j � k =⇒ i � k) which altogether imply that:

(
i � j and j � k =⇒ i � k

)
and (i � j and j � k =⇒ i � k) .

Proof (Lemma 3) Let ϕ be any Pareto optimal and conversely consistent correspondence

such that ϕ|2 is nonempty valued. Let {�a,b}(a,b)∈H×H be the family of relations induced by

ϕ|2 on N . Suppose that there exist distinct elements i1, i2, . . . , in ∈ N and a1, a2, . . . , an ∈ H

with n ≥ 3 such that i1 �a1,a2 i2 �a2,a3 . . . �an−1,an in �an,a1 i1. Consider the following

problem E and the underlined allocation µ:

Pi1 Pi2 Pi3 . . . Pin

an a1 a2 an−1

a1 a2 a3 an

...
...

...
...

Note that for any two distinct integers l, k ∈ {1, 2, . . . , n}, we have that µ{il,ik} ∈ ϕ|2
(
rµ
{il,ik}(E)

)
=

ϕ
(
rµ
{il,ik}(E)

)
. But then, by converse consistency of ϕ, we have µ ∈ ϕ(E), a contradic-

tion to ϕ being Pareto optimal and µ being Pareto dominated in E . Therefore, the family

{�a,b}(a,b)∈H×H is 3+–acyclic.

21



For the converse, let ϕ be any consistent correspondence such that ϕ|2 induces a 3+–acyclic

family of relations {�a,b}(a,b)∈H×H on N and is Pareto optimal. Suppose that ϕ is not Pareto

optimal. Then there exists E = (N,H, (Ri)i∈N ) and µ ∈ ϕ(E) such that µ is weakly Pareto

dominated by another allocation µ′ for E . We will show that there exists a cycle of agents

i0, i1, . . . , in = i0 ∈ N such that each one envies the next, under µ. Let ∅ 6= N ′ ⊂ N be the

set of agents who are strictly better off under µ′. Since preferences are antisymmetric and the

agents in N \ N ′ are indifferent between µ and µ′, their assignments are the same in either

case, i.e. µ′|N\N ′ = µ|N\N ′ . Therefore, we have that µ′(N ′) = µ(N ′). Now, consider the

bijection π = µ−1 ◦ µ′ : N → N . Since µ′|N\N ′ = µ|N\N ′ and µ′(N ′) = µ(N ′), we have that

π|N\N ′ is the identity map on N \N ′ and π|N ′ is a permutation of N ′. Choose i ∈ N ′ and let

Ni =
{

πk(i) | k ∈ {0, 1, 2, . . .}
}
⊂ N ′.12 Let j ∈ Ni. Since µ (π(j)) = µ◦

(
µ−1 ◦ µ′

)
(j) = µ′(j)

and j ∈ N ′, we have that µ (π(j)) = µ′(j) Pj µ(j), i.e. j envies π(j) under µ. In particular,

j 6= π(j) and j, π(j) ∈ Ni, therefore, n = |Ni| ≥ 2. Note that for any j = πl(i) ∈ Ni and any

positive integer k such that πk(j) = j, we have πk(i) = π−l◦πk◦πl(i) = π−l◦πk(j) = π−l(j) =

π−l◦πl(i) = i. Then, Ni =
{
i, π(i), π2(i), . . . , πk−1(i)

}
, so k ≥ |Ni| = n. Therefore, the agents

i, π(i), π2(i), . . . , πn−1(i) are all distinct, for otherwise there exists j ∈ Ni and a positive integer

k < n such that πk(j) = j, a contradiction. Then, we have Ni =
{
i, π(i), π2(i), . . . , πn−1(i)

}
.

Moreover, since πn(i) ∈ Ni, by a similar argument, we can only have that πn(i) = i. Letting

ik = πk(i) and ak = µ(ik), we have that a0 = anPin−1an−1 . . . a2Pi1a1Pi0a0. Moreover, for any

k ∈ {0, 1, . . . , n−1}, we have ak+1Pik+1
ak, for otherwise there exists k ∈ {0, 1, . . . , n−1} such

that akPik+1
ak+1Pikak. But then, by consistency of ϕ, the following underlined allocation is

chosen by ϕ and hence by ϕ|2, from the reduced problem rµ
{ik,ik+1}(E):

Pik |{ak,ak+1} Pik+1
|{ak,ak+1}

ak+1 ak

ak ak+1

a contradiction to ϕ|2 being Pareto optimal. In particular, we have n ≥ 3, for otherwise, if

n = 2, then a0 = a2Pi1a1, a contradiction to ak+1Pik+1
ak for k = 0. Moreover, for every

12Here, πk denotes the map π composed k times with itself and π−k =
(
π−1
)k

. The map π0 denotes the

identity.
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k ∈ {0, 1, . . . , n− 1}, the reduced problem rµ
{ik,ik+1}(E) is of the form:

Pik |{ak,ak+1} Pik+1
|{ak,ak+1}

ak+1 ak+1

ak ak

where the underlined allocation is chosen by ϕ|2, by consistency of ϕ. But then, i0 �a0,an−1

in−1 �an−1,an−2 . . . �a2,a1 i1 �a1,a0 i0 and n ≥ 3, a contradiction to {�a,b}(a,b)∈H×H being

3+–acyclic. Therefore, ϕ is Pareto optimal, completing the proof of the lemma. 2

Proof (Lemma 4) Let � be a reflexive, complete, and 3+–acyclic relation on N . Let ϕ =

Ext
(
ϕ�
)
. By the axiom of choice, there exists a linear order �′⊂�. Then, ϕ�

′ |2 ⊂ ϕ�, i.e.

ϕ�
′
= Ext

(
ϕ�

′ |2
)
⊂ Ext

(
ϕ�
)

= ϕ. Since ϕ contains the simple serial dictatorship ϕ�
′
, it is

nonempty valued. The correspondence ϕ is consistent and conversely consistent. By Lemma

3, it is also Pareto optimal. To see that ϕ is neutral, let ∅ 6= N ⊂ N , E = (N,H, (Ri)i∈N ) and

E ′ = (N,H ′, (R′
i)i∈N ). W.L.O.G., assume that |N | ≥ 2. Suppose that there exists a bijection

π : H → H ′ satisfying:

∀i ∈ N, ∀a, b ∈ H : aRib ⇐⇒ π(a)R′
iπ(b),

Let µ ∈ ϕ(E). By definition of ϕ, we have:

∀N ′ ⊂ N with |N ′| = 2 : µN ′ ∈ ϕ�
(
rµ
N ′(E)

)
.

Take any N ′ ⊂ N with |N ′| = 2. From above, µN ′ ∈ ϕ�
(
rµ
N ′(E)

)
. Note that π|µ(N ′) : µ(N ′) →

π ◦ µ(N ′) is a bijection between the house sets of the reduced problems rµ
N ′(E) and rπ◦µ

N ′ (E ′)

satisfying:

∀i ∈ N ′, ∀a, b ∈ µ(N ′) : aRi|µ(N ′)b ⇐⇒ π|µ(N ′)(a) R′
i|π◦µ(N ′) π|µ(N ′)(b),

So, by neutrality of ϕ� for two-person problems, (π ◦ µ) |N ′ = π|µ(N ′) ◦ µN ′ ∈ ϕ�
(
rπ◦µ
N ′ (E ′)

)
.

Since this is true for any such N ′, by definition of ϕ, we have that π ◦ µ ∈ ϕ(E ′). Therefore,

ϕ is neutral.

For the converse, let ϕ be a nonempty valued, Pareto optimal, consistent, conversely con-

sistent, and neutral correspondence. By Lemma 2, ϕ = Ext (ϕ|2) up to one player problems,
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and by Lemma 3, ϕ|2 induces a 3+–acyclic family of relations {�a,b}(a,b)∈H×H on N . Note

that in this case, since ϕ is nonempty valued, the equality ϕ = Ext (ϕ|2) also holds for one-

person problems and for any pair of distinct a, b ∈ H, the relation �a,b is complete. Since ϕ is

neutral, in particular, ϕ|2 is neutral. Neutrality of ϕ|2 requires in turn that the reflexive and

complete relation �a,b is identical for any pair of distinct a, b ∈ H. Let �=�a,b for some—or

for any pair of distinct a, b ∈ H. Then, ϕ|2 = ϕ�. Moreover, since the family {�a,b}(a,b)∈H×H

is 3+–acyclic, the relation � is 3+–acyclic. Therefore, ϕ = Ext
(
ϕ�
)
, where � is a reflexive,

complete, and 3+–acyclic relation on N , completing the proof of the lemma. 2
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