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Abstract

Most of the two-sided matching literature maintains the assumption that agents

are never indifferent between any two members of the opposite side. In practice,

however, ties in preferences arise naturally and are widespread. Market design

needs to handle ties carefully, because in the presence of indifferences, stability no

longer implies Pareto efficiency, and the deferred acceptance algorithm cannot be

applied to produce a Pareto efficient or a worker-optimal stable matching.

We allow ties in preference rankings and show that the Pareto dominance rela-

tion on stable matchings can be captured by two simple operations which involve

rematching of workers and firms via cycles or chains. Likewise, the Pareto relation

defined via workers’ welfare can also be broken down to two similar procedures

which preserve stability. Using these structural results we design fast algorithms

to compute a Pareto efficient and stable matching, and a worker-optimal stable

matching.
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1 Introduction

Much of the matching market design literature relies on all preference (and priority)

rankings being strict. However, in many settings, ties in preferences and priorities are

widespread. For example, agents on one side of the market might treat some alter-

natives as identical (e.g., entry level posts in a firm or seats in a school) even when

those alternatives have different preferences or criteria in the way they rank potential

matches.1 Even when potential matching partners are different, some agents may well

be indifferent between some and be willing to reveal so when asked.2 Faced with a

large number of alternatives to consider, the task of evaluating and ranking them all

can be prohibitive, and the agents might instead use simple scoring systems (such as

high, medium, low) which lead to coarse rankings. In allocating public resources (as

in school admissions), large numbers of recipients are given equal priority ranking for

legal reasons. In various practical matching platforms, instead of observing all possible

alternatives, agents express simple criteria to describe their preferences. For example

admission criteria to courses, software compatibility between a programmer and a task,

or expressing availability on a scheduling platform lead to preferences with large indif-

ference classes.3

1When firms [schools] care about the match-specific quality or the overall composition of workers

[students] due to diversity concerns, firms’ preferences [schools’ priorities] over workers [students] depend

on the specific post [seat], even though workers [students] will perceive posts [seats] at a given firm

[school] as identical. See, e.g, Kominers and Sönmez (2016) for a detailed analysis of such preferences

[priorities].
2In their study of school choice in Amsterdam, when de Haan et al. (2016) asked parents to assign

numerical values to schools, some assigned equal values to some schools even though they had the

option of rating schools with a fine metric. Scottish Foundation Allocation Scheme (which matches

about 750 student doctors to 50 training programmes every year) allows hospitals to express ties in

preferences. Irving (2008) reports that most hospitals do express ties: some rank doctors in three

indifference classes, whereas some have many more indifference classes with several doctors in each

class. This suggests that hospitals maintain ties in their preferences even after substantial deliberation

over the alternatives.
3Harvard University Freshman Seminars Program encourages faculty members to accept all students

who meet their criteria for admission. If a faculty member wishes, they can rank order applicants

allowing for ties. For details, see http://freshmanseminars.college.harvard.edu/how-review-and-rank-

applications. Another example with widespread ties on both sides of the market is the Harvard Business

School Health Care Initiative’s matching of alumni to students for mentoring, where coarse rankings

appear to originate from simple criteria that guide preferences. See http://www.hbs.edu/healthcare/for-

alumni/Pages/default.aspx.
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We argue in this paper that the way such ties are handled has important conse-

quences, not only from a distributional perspective, but also in terms of overall welfare.

We show why matching mechanisms should be cautious about treating ties arbitrarily,

and we propose novel designs to deal with indifferences carefully and efficiently.

The notion of stability in a two-sided matching market rests on the premise that each

agent should prefer their match to staying unmatched (individual rationality), and that

a matching should be robust to two unmatched agents’ temptation to match because

both prefer each other over their current partners (no blocking pairs).4 Clearly, if either

agent in a blocking pair is indifferent between the new prospect and their current match,

stability of the matching is not threatened.5 While weak preferences abound in various

real life settings, in practice most centralized matching mechanisms either force agents

to reveal strict rankings or break ties as part of the mechanism. Tie-breaking introduces

new potential “blocking pairs”, and therefore new stability constraints. Thanks to Gale

and Shapley (1962) we know that a stable matching exists in the strict preferences en-

vironment derived after tie-breaking. Of course this matching is stable with respect to

the original preferences, because after all whichever pair that blocks in the absence of

ties would continue to be a blocking pair after ties are broken. However, any form of

tie-breaking will typically “destabilize” some matchings that were stable in the original

problem with indifferences. This might have serious welfare consequences, as we illus-

trate in the following example. Consider two firms, A and B, with one position each,

and two workers i and j. Suppose firm B prefers i over j, denoted i �B j; whereas

worker j prefers firm A over B, denoted A �j B. Firm A and worker i are indifferent

between who they match with, denoted i ∼A j and A ∼i B, respectively:

Actual preferences with ties

%A %B
i ∼A j i

j

%i %j
A ∼i B A

B

4Roth (2002) finds strong correlation between a clearinghouse being successful and its delivering

stable matchings. Various regional markets for new physicians and surgeons in the UK provide field

data on this, and the lab experiments by Kagel and Roth (2000) confirm this prediction in a controlled

environment. In the context of school choice (Abdulkadiroğlu and Sönmez, 2003) the very same notion

captures the idea of respecting priorities. Accordingly stability has been a central property of many

centralized matching schemes.
5It is not plausible that an agent would be part of a blocking pair unless it was worthwhile to do so.

Therefore the standard definition of a blocking pair requires that both parties should be strictly better

off from getting together.

3



If everyone breaks ties alphabetically when asked to reveal strict rankings, we obtain

the strict preferences, denoted %′, below:

Preferences derived via tie-breaking

and the resulting stable matching

%′A %′B
i i

j j

%′i %′j
A A

B B

For these strict rankings %′, there is a unique stable matching
(
i j
A B

)
. However, if the

workers swap their jobs, both worker j and firm B are better off, while worker i and

firm A are as happy as before. Moreover, this new matching is stable with respect to

the actual preferences %. The alphabetical tie-breaking turns {i, A} into a blocking

pair for the unique efficient matching
(
i j
B A

)
, and thus de-stabilizes it. Consequently,(

i j
A B

)
survives as the only stable matching, leaving both sides of the market worse

off compared with the stable and efficient matching. Moreover, applying the workers-

proposing deferred acceptance algorithm after the above tie-breaking does not return a

worker-optimal stable matching, invalidating one of Gale and Shapley’s key results.

The extent of the inefficiency due to not properly handling ties will, of course, depend

on the realization of preferences. To get a sense of the potential scope of inefficiency,

consider a market consisting of n ≥ 2 workers and an equal number of firms each having

one position to fill. Every agent finds those on the other side acceptable. Firms are

indifferent between any two workers. Each worker wi has a strict preference top ranking

firm fi and bottom ranking firm fi−1 (mod n) for i = 0, 1, . . . , n−1. Both the matching

ν which assigns wi to fi and the matching µ which assigns each wi to fi−1 (mod n) are

stable. The size of the Pareto inefficiency in the stable matching µ is n in terms of the

number of affected agents, and n(n − 1) in terms of the total steps up the preference

lists of the agents.6

Despite the simplicity of our motivating example and the wide range of contexts

where indifferences are common, the literature has been missing an effective way to

compute an efficient and stable matching or a worker-optimal stable matching. Our

findings regarding the structure of the set of stable matchings allow us to resolve these

issues via economically intuitive and computationally fast7 algorithms.

6Diebold and Bichler (2017) present simulations to compare the performance of a number of matching

algorithms. Their efficiency notion is one-sided, but they do include Efficient and Stable Matching

Algorithm (ESMA) which we introduce in Section 3. It is worth noting that even though ESMA insists

on improving both workers and firms, Diebold and Bichler find that it improves the average match rank

for workers by about 10%.
7The computer scientific benchmark for what makes an algorithm fast it its so-called computationally
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Since our model and terminology are closely related to those of Erdil and Ergin

(2008, henceforth EE’08) it is worth highlighting how the current work differs in its con-

ceptual framework and technical novelty. EE’08 is motivated by improving efficiency in

school choice, and critically, only students’ preferences constitute the welfare criteria in

their analysis. In contrast, we begin with a two-sided efficiency concept. The difference

between the one-sided and the two-sided perspectives is stark. First, in the absence

of ties, there isn’t even a question of efficiency when both sides’ preferences matter,

because all stable matchings are efficient. In a one-sided analysis, however, there is usu-

ally a conflict between stability and one-sided efficiency. When respecting exogenously

imposed priorities is indispensable, the welfare benchmark for the one-sided analysis is

constrained efficiency (i.e., student-optimal stability). Gale and Shapley (1962) solve

this stability constrained efficiency problem when there are no ties. EE’08 note that this

solution fails if school priorities have ties (as is often the case in practice), and suggest a

novel class of mechanisms (stable improvement cycles) to achieve student-optimal stable

allocations. Abdulkadiroğlu et al. (2009) find strong empirical evidence that the way

ties are resolved in school priorities matter significantly for student’s welfare.8 However

the one-sided approaches of EE’08 and APR’09 have no implications for two-sided ef-

ficiency whether there are ties or not. In particular stable improvement cycles improve

students’ welfare always at the expense of schools’ welfare. Our two-sided perspective in

the current work sheds light on a separate and wider class of applications where agents

on both sides of the market feature in the efficiency analysis. Secondly, instead of focus-

ing on a careful treatment of ties in exogenously fixed priorities for allocation problems,

we are motivated by the prevalence of ties in preferences on both sides of matching prob-

lems. Given the remarkable growth of matching platforms with increasing numbers of

participants, the possibility of expressing coarse preferences is becoming an attractive

complexity which is roughly the number of “steps” an algorithm requires to complete as a function of

the size of the input of the algorithm. While this function being a polynomial is sufficient to call an

algorithm fast in the asymptotic sense, whether it performs fast in practice is an empirical question

which depends on the size of the data set. Both our simulations and those of other authors (e.g.,

Diebold and Bichler, 2017) who employ our algorithms (e.g., Diebold and Bichler, 2017) confirm that

these algorithms are indeed fast enough with real life size data sets even to be able to run thousands

of simulations on standard computers.
8In particular, they find that of the 73115 students matched by deferred acceptance (DA) following

arbitrary tie-breaking, stable improve cycles would improve 1488 students. If the improvements are

weighted to incorporate how many schools these students go up in their preferences, the total size of

the improvement is 3600 steps up the preference lists.
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design feature. A key insight for these markets follows from our findings: allowing, even

encouraging, agents to express indifferences when ranking alternatives not only simpli-

fies preference revelation and market participation, but also improves efficiency.9 The

extent of such efficiency gains can be large, and our computationally fast algorithms

enable such welfare improvements. In Section 4 we turn to worker-optimality, bringing

our framework closer to EE’08 in spirit, but with a more general model incorporating

indifferences in workers’ preferences, which allows a wider range of applications. This

generalization is far from a straightforward technical exercise, and at a conceptual level,

it requires the notion of stable improvement chains which could not have existed in

the environment of EE’08. In contrast with cycles which rotate workers between firms

(while preserving stability), these chains allow the size of the matching to grow by as-

signing an unemployed worker in place of an employed one, shifting employed workers

to the places of other employed ones, and finally filling an empty post with a previously

employed worker (while preserving stability). In particular, such worker-improvement

chains can change the size of the matching (not possible with cycles), and might even

improve firms’ welfare (again never possible with worker-improvement cycles). We defer

the discussion of technical differences to the relevant sections, and summarize below our

main results.

A brief summary of results

Our first structural result (Theorem 1) establishes the nature of the Pareto domi-

nance relation on the set of stable matchings. Namely, a stable matching µ can be Pareto

dominated if and only if the workers can form a trading cycle or a trading chain, where

every worker and firm involved gets weakly better off, with at least one of them getting

strictly better off. Therefore, it is sufficient to search for these Pareto improvement (PI)

cycles and chains to check whether a stable matching is Pareto efficient or not. Using

the fact that Pareto improvements preserve stability (Lemma 1), we conclude that by

successively searching for PI-cycles and chains and carrying them out whenever found,

we can reach a Pareto efficient and stable matching. This procedure, which we call

the Efficient and Stable Matching Algorithm, has polynomial time complexity, and it is

remarkably fast in real-life size datasets.

In some applications, the policy maker compares matchings according to one side of

9Irving’s (2008) report on the Scottish doctor-hospital matching scheme echoes the idea of permit-

ting, even encouraging, ties as a policy idea in the light of the efficiency gains we study.
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the market. Perhaps the best known example is school choice. Stability matters, because

it captures the notion of respecting priorities. Beyond that, the welfare considerations

involve students’ preferences only. Therefore, the concern is to find a student-optimal

stable matching. While Gale and Shapley’s (1962) deferred acceptance algorithm yields

one when both school and student rankings are strict, it fails to do so when there

are ties. Our second main result, Theorem 2, provides a clear solution. If a stable

matching is not worker-optimal stable, then it admits a trading cycle or a trading chain,

where workers get weakly better off, stability is preserved, and at least one worker

gets strictly better off. Our Worker-Optimal Stable Matching Algorithm is a successive

search for such cycles and chains until we exhaust them, and hence reach a worker

optimal stable outcome. In contrast with carrying out an exhaustive search (which

would be of exponential time complexity and prohibitively slow in any reasonable size

of real life data), our algorithm is polynomial time and performs fast in practice.

Our main message is that centralized matching mechanisms can make use of exist-

ing ties in preferences and priorities. When agents are forced to reveal strict rankings

over alternatives they are indifferent about, mechanisms can result in efficiency loss.

Our algorithms offer a practical solution to the problem of finding stable and efficient

matchings when there are ties. Instead of requiring agents to submit strict rank or-

ders, the policy maker should allow and encourage revelation of ties in rankings when

preferences involve indifferences.

Related literature

While the concept of indifferences or ties in preferences is widely acknowledged in

practice, the implications for matching markets have been studied relatively little. We

briefly note here some of the earlier work closest to our paper.

Crawford and Knoer (1981) incorporate the deferred acceptance algorithm into a

model with discrete salaries. (See also Kelso and Crawford, 1982.) They note that ties

invalidate Gale and Shapley’s result of convergence to a worker-optimal stable matching.

Monetary transfers ensures that the strict core is non-empty, while it can be empty in

our environment. The difference between the core and the strict core in their model

resembles the difference between inefficient stable and efficient stable matchings in our

model. Their computation of a strict core allocation is not in polynomial time. Jones

(1983) modifies the Crawford-Knoer algorithm to get polynomial time convergence in a

market with discrete valuations and salaries. His algorithm is different in nature from
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ours, and neither of the procedures can be translated into the other’s environment to

solve the same problem.

Dur et al. (2017), in their study of the Boston School Choice System, identify a

widespread phenomenon of ties in student preferences. A school in Boston can rank

students differently depending on which slot it is considering. These slots are identical

from the perspective of the student, but the admissions system treats them differently

in order to have some control over diversity. The mechanism used in Boston speci-

fies an order (called a precedence order) over slots to fill these slots. Effectively, this

is using a tie-breaking rule: each student’s indifference over the slots at a school are

resolved according to the precedence order. Their empirical results show that the dis-

tributional consequences of different precedence orders (i.e., different tie-breaking rules)

are huge. Hence the effect of ties in students’ preferences is not a mere theoretical curios-

ity. Kominers and Sönmez (2016) study slot specific priorities in a much more general

set up which allows contracts. In these papers, the notion of indifference is widespread,

but it is implicit and is restricted to indifferences over slots in the same school (or at

the same branch, respectively). It is worth noting, however, that these models do not

capture the observed ties in various matching platforms in practice such as those we

mention in Footnotes 2 and 3.

Another special case of our model is Shapley and Scarf’s (1974) housing market

model. The top trading cycles mechanism is well known to be efficient, but this result

relies on all preferences being strict. Alcalde-Unzu and Molis (2011) and Jaramillo

and Manjunath (2012) allow the agents to have ties in their preferences, and design

strategy-proof and Pareto efficient mechanisms.

Bogomolnaia and Moulin (2004) restrict preferences to be dichotomous: each agent

views those on the other side of the market as either acceptable or unacceptable. By

allowing randomized mechanisms, which can be interpreted as time sharing, they obtain

efficient and strategy-proof mechanisms. Their results and techniques, while powerful

in the dichotomous preference domain, do not generalize to our environment.

2 The Model

Let W and F denote disjoint finite sets of workers and firms, respectively. Let A = W∪F
stand for the set of all agents. Let q = (qf )f∈F where qf ≥ 1 denotes the number of

positions that firm f has. A preference profile is a vector of weak orders (complete
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and transitive relations) %= (%a)a∈A where %w denotes the preference of worker w over

F ∪ {∅} and %f denotes the preference of firm f over W ∪ {∅}. For a worker, ∅
represents being unemployed. For a firm, it stands for an unfilled position. Let �a and

∼a denote the antisymmetric and symmetric parts of %a, respectively. Throughout, we

will assume that there is no worker w and firm f such that w ∼f ∅ or f ∼w ∅. We

will call this the no indifference to unemployment/vacancy (NI∅) assumption. A

worker w is said to be acceptable to firm f if w �f ∅; similarly a firm f is acceptable

to worker w if f �w ∅. A preference profile %= (%a)a∈A is strict if %a is anti-symmetric

for each a ∈ A.

A strict %′ is called a tie-breaking of % if x %a y implies x %′a y for all x, y, a ∈ A.

This general formulation allows different agents to break ties differently. If, on the other

hand, every agent a breaks ties in %a according to the same linear order, then we obtain

a single tie-breaking. Formally speaking, %′ is called a single tie-breaking of %, if

there exist bijections φW : W → {1, . . . , |W |} and φF : F → {1, . . . , |F |} such that:

f ∼w g =⇒ [f �′w g ⇔ φF (f) < φF (g)],

and

w ∼f v =⇒ [w �′f v ⇔ φW (w) < φW (v)],

for all w, v ∈ W and f, g ∈ F .

Note that our model specifies firms’ preferences only over workers. This preference

information is enough to check for stability of a given matching. However in order to

conduct welfare analysis, we need to know more about how firms rank sets of workers.

Let 2W stand for the set of subsets of W . We will extend10 the preference %f over

W ∪{∅}, to a reflexive and transitive (but typically incomplete) preference %f over 2W .

A preference relation %̃f over 2W is called responsive if it is complete, transitive, and

for any S, T,K ⊆ W where S ∩K = T ∩K = ∅ and |S|, |T | ≤ 1:

(S ∪K) %̃f (T ∪K) ⇐⇒ S %̃f T.

Now, for any two subsets I and J of W , we will define I %f J if and only if I%̃fJ for

every responsive extension %̃f of %f . This is a “minimal responsive extension” in the

following sense. Given f ’s preferences over individual workers, and the fact that f ’s

preferences over sets of workers are responsive, we will conclude that f weakly prefers I

10An extension is naturally defined as: the preference %̃f is an extension of %f if (i) for any

w, v ∈W : {w}%̃f{v} if and only if w %f v and (ii) for any w ∈W , {w}%̃f∅ if and only if w %f ∅.
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to J if and only if I %f J . A useful observation11 is that I %f J if and only if the sets

I and J can be indexed as I : i1, . . . , in and J : j1, . . . , jn, where for each worker short

of n, a copy of ∅ is written and it %f jt for each t ∈ {1, . . . , n}.
A matching is a function µ : W → F ∪{∅} such that |µ−1(f)| ≤ qf for each f ∈ F .

A matching µ is individually rational if µ(w) %w ∅ for each worker w; and v %f ∅
for each v ∈ µ−1(f) and firm f . Given a matching µ, a worker firm pair (w, f) is said

to form a blocking pair if (i) f �w µ(w), and (ii) w �f v for some v ∈ µ−1(f), or

|µ−1(f)| < qf and w �f ∅. A matching µ is stable if it is individually rational and if

there is no blocking pair.12

We define the partial orders %W , %F and %A on the set of matchings as follows.

Let µ %W ν, if µ(w) %w ν(w) for each w ∈ W ; let µ %F ν, if µ−1(f) %f ν−1(f) for

each f ∈ F ; and let µ %A ν if µ %W ν and µ %F ν. Let ∼W , ∼F , and ∼A denote

the symmetric parts, whereas �W , �F , and �A denote the asymmetric parts of these

relations. A matching µ Pareto dominates ν if µ �A ν. This is equivalent to the

requirement that all workers and firms weakly prefer µ to ν, and at least one worker

or a firm strictly prefers µ to ν. A matching is Pareto efficient if it is not Pareto

dominated by any other matching. A stable matching µ is called W -optimal stable if

there is no stable matching ν such that ν �W µ.

Gale and Shapley (1962) described an algorithm, which is polynomial-time in the

number of workers and firms, that yields a stable matching for a strict preference profile

%. This is known as the worker proposing deferred acceptance (DA) algorithm:

At the first step, every worker applies to her favorite acceptable firm. For

each firm f , qf most preferred acceptable applicants (or all if there are fewer

than qf ) are placed on the waiting list of f , and the others are rejected.

At the kth step, those applicants who were rejected at step k − 1 apply

to their next best acceptable firms. For each firm f , the most preferred

acceptable qf workers among the new applicants and those in the waiting

list are placed on the new waiting list and the rest are rejected.

The algorithm terminates when every worker is either on a waiting list or has been

11The proof of this observation is included in the Appendix for completeness.
12Relaxing this condition to allow one side to be indifferent in a blocking pair would give us the

notion of a strongly stable matching, which may fail to exist. For example, when there is a single firm

with one position, and two workers who both find the firm acceptable, if the firm is indifferent between

the workers, then no matching is strongly stable.
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rejected by every firm that is acceptable to her. After this procedure ends, firms admit

workers on their waiting lists which yields the desired matching. When % is strict,

DAW (%) denotes the outcome of the worker proposing DA algorithm.

Theorem (Gale and Shapley, 1962) When preferences are strict, the worker proposing

deferred acceptance algorithm returns the unique worker-optimal stable matching.

The DA algorithm is not well-defined when the preference profile % is not strict.

When there are indifferences in preferences, the above algorithm is employed after the

ties are exogenously broken. Since a matching that is stable with respect to a tie-

breaking %′ of % is also stable with respect to %, an immediate corollary of the above

theorem is that there always exists a stable matching in our model.13 However, as we

have illustrated in the introduction, using the DA after arbitrary tie-breaking does not

result in an efficient nor worker-optimal stable matching. Are there intuitive and com-

putationally efficient algorithms to find Pareto efficient and/or worker-optimal stable

matchings? Before we design such algorithms, we proceed to develop a better under-

standing of the structure of the set of stable matchings.

3 Pareto Efficient and Stable Matchings

We start by noting that a matching must be stable if every agent weakly prefers it to

some other stable matching.

Lemma 1 If ν %A µ for some stable matching µ, then ν is also stable.

Proof. Since µ is individually rational and every agent is weakly better-off at ν, ν

is also individually rational. Next consider any worker firm pair (w, f). There exist

enumerations ν−1(f) : i1, . . . , iqf and µ−1(f) : j1, . . . , jqf such that for each worker short

of qf a copy of ∅ is inserted and it %f jt for t ∈ {1, . . . , qf}. If (w, f) is a blocking pair for

ν, then f �w ν(w) and w �f it for some t ∈ {1, . . . , qf}. But then f �w ν(w) %w µ(w)

and w �f it %f jt implying that (w, f) is a blocking pair for µ, a contradiction. �

Lemma 1 implies that a stable matching that is not Pareto efficient is Pareto dom-

inated by a stable matching. Therefore, starting from an arbitrary stable matching, it

13To every stable matching, corresponds at least one tie-breaking at which it is stable. On the other

hand it is far from clear which tie-breaking rules should be used in order to find a Pareto efficient, or

a worker-optimal stable matching.
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is possible to reach a Pareto efficient and stable matching through a finite sequence of

Pareto improving stable matchings.

Corollary 1 There exists a stable and Pareto efficient matching.

The argument behind Corollary 1 suggests a constructive method to find a Pareto

efficient and stable matching. However the argument does not explicitly specify (1)

how to check whether a given stable matching µ is Pareto efficient, and (2) if not,

how to find a matching that Pareto dominates it. Since the model is finite, one can

imagine answering these questions by comparing µ exhaustively to every other matching.

However such an approach is computationally infeasible, since the number of matchings

grows exponentially in min{|W |, |F |}. In order to produce a stable and Pareto efficient

matching in a real-life centralized matching market, it is therefore necessary to provide

polynomial time methods to answer these questions.

Given a preference profile % and a matching µ, we will next introduce and discuss

two tests: the existence of Pareto improvement cycles and the existence of Pareto im-

provement chains. The existence of these cycles or chains will immediately imply that

µ is not Pareto efficient. Conversely we will prove, in Theorem 1, that if such cycles or

chains do not exist for a stable matching µ, then µ is Pareto efficient. We will then use

these findings to describe a polynomial time method for producing a stable and efficient

matching.

Definition 1 A Pareto improvement (PI) cycle consists of distinct workers w1, . . . , wn ≡
w0 (n ≥ 2) such that:

(i) Each wt is matched to some firm,

(ii) µ(wt+1) %wt µ(wt) and wt %µ(wt+1) wt+1 for t ∈ {0, 1, . . . , n− 1},

(iii) At least one of the preference relations in (ii) is strict for some t ∈ {0, 1, . . . , n−1}.

Each worker wt in a PI-cycle weakly desires the position of the following worker

wt+1, and the employer µ(wt+1) of the latter would not mind replacing wt+1 with wt.

Moreover, at least one worker strictly envies the following worker or at least one firm

µ(wt+1) prefers wt to wt+1. If there is a PI-cycle, then the matching µ can be Pareto

improved, where the Pareto dominating matching µ′ is obtained by letting each worker

move into the firm of the next worker:

µ′(w) =

{
µ(wt+1) if w = wt for some t ∈ {0, . . . , n− 1},
µ(w) otherwise.
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Definition 2 A Pareto improvement (PI) chain consists of distinct workers w1, . . . , wn

(n ≥ 2) and a firm f with an empty position such that:

(i) a. w1 is unmatched,

b. wt is matched with some firm for t ∈ {2, . . . n},

(ii) a. µ(wt+1) %wt µ(wt) and wt %µ(wt+1) wt+1 for t ∈ {1, . . . , n− 1}.

b. f %wn µ(wn) and wn %f ∅.

Each worker wt in a PI-chain except wn, weakly envies the following worker wt+1,

and as in a PI-cycle, the employer µ(wt+1) of the latter would not mind replacing wt+1

with wt. The last worker wn weakly desires the empty position of f and is acceptable

to f . Note that in the definition of a PI-chain, we do not need to require that at least

some of the preferences in (ii) is strict, because the NI∅ assumption guarantees that

µ(w2) �w1 ∅ = µ(w1) and wn �f ∅.14 Moreover the requirement that w1 is not matched

is crucial for µ′ to Pareto dominate µ, because otherwise w1’s employer could be worse-

off at µ′. If there is a PI-chain, then the matching µ can be Pareto improved, where the

Pareto dominating matching µ′ is obtained by letting each worker other than wn move

into the firm of the next worker and letting wn move to f :

µ′(w) =


µ(wt+1) if w = wt for some t ∈ {1, . . . , n− 1},

f if w = wn,

µ(w) otherwise.

By carrying out a PI-cycle or a PI-chain, we mean constructing the new matching

µ′ which Pareto dominates µ as in above. Our next theorem proves a converse to the

above observations: if µ is stable and there are no PI-cycles nor PI-chains, then we can

conclude that µ is Pareto efficient.15

14Note also that if the matching µ is stable, then in part (ii) of the definition of a PI-cycle and part

(ii.a) of the definition of a PI-chain, at least one of the preferences should be an indifference for each t.

Similarly in part (ii.b) of the definition of a PI-chain, we must have f ∼wn µ(wn).
15It is possible to embed the definition of a PI-chain into that of a PI-cycle as follows: introduce

sufficiently many “ghost workers” and “ghost firms” into the model such that each ghost worker is

indifferent between all firms including the ghost firms, each actual firm is indifferent between all ghost

workers, finds them acceptable, and ranks them below all actual workers it finds acceptable; each ghost

firm is indifferent between all workers including ghost workers; and each actual worker is indifferent

between all ghost firms, finds them acceptable, and ranks them below all actual firms she finds accept-

able. Now, w1 in the PI-chain is matched with a ghost firm, ∅F , and the vacancy at f is occupied by

a ghost worker ∅W . By letting ∅W move to ∅F , we can interpret the PI-chain of the original model

as a PI-cycle of the modified model.
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A directed graph G = (V,E) consists of a set V of vertices and a set E of directed

edges, where a directed edge is an ordered pair of vertices, i.e., an element of the cartesian

product V ×V . The word ‘directed’ will be omitted throughout the text. We will write

an edge (x, y) as x→ y as we will visualize the vertices as nodes, and the edges as arrows

between these nodes. A directed cycle in G consists of distinct vertices x0, . . . , xn−1

(n ≥ 2) such that x0 → x1 → · · · → xn−1 → xn ≡ x0.
16 We will simply refer to these

as ‘cycles’ for the rest of the text unless we prefer to emphasize the directed structure.

Note that, given a directed graph, if each vertex of this graph has exactly one arriving

and one leaving edge, then each edge of the graph is part of a cycle.

Theorem 1 A stable matching is Pareto efficient if and only if it does not admit PI-

cycles nor PI-chains.

Proof. It only remains to prove the “if” part. Assume that µ is stable but not

Pareto efficient and let ν be a matching that Pareto dominates µ. Then by NI∅, every

worker matched at µ is matched at ν, and each firm is matched with at least as many

workers at ν as it is matched at µ. Let W ′ = {w ∈ W |µ(w) 6= ν(w)} and note that by

NI∅, each worker in W ′ is matched to a firm at ν. For each firm f fix enumerations

ν−1(f) : if1 , . . . , i
f
qf

and µ−1(f) : jf1 , . . . , j
f
qf

such that (1) for each worker short of qf a

copy of ∅ is inserted, (2) ν(jft ) = f ⇒ ift = jft , and (3) ift %f j
f
t , for t ∈ {1, . . . , qf}.

Construct a directed graph G with the vertex set W ′ as follows. For any w ∈ W ′,

consider the unique t such that w = i
ν(w)
t , and let w → j

ν(w)
t if j

ν(w)
t 6= ∅. Note that

if w → v then µ(v) %w µ(w), and w %µ(v) v. Call an edge of G strict if one of these

preferences is strict and denote a strict edge by w � v.

If there is no extra worker matched at ν, each firm must be matched with the same

number of workers in µ and ν. In particular each vertex in G has exactly one leaving

edge and one arriving edge. Therefore each edge in this directed graph must be part

of a cycle. Since ν Pareto dominates µ, G must have a strict edge. In particular each

strict edge is part of a cycle, leading to a PI-cycle.

If there is a worker w1 who is matched at ν but not at µ, then by NI∅ and stability

of µ, ν(w1) cannot have an empty position at µ. Therefore there exists a worker w2 such

that w1 � w2. Then either w2 moved to a firm with an empty position at µ or there is

a worker w3 such that w2 → w3. In the first case, w1, w2, and ν(w2) form a PI-chain.

In the second case, w3 must have moved to a firm which had an empty position at µ, or

16Our terminology allows for self pointing edges x → x, but we do not call them cycles since our

definition of a cycle involves at least two distinct vertices.
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there is a worker w4 such that w3 → w4. In the first case, w1, w2, w3, and ν(w3) form a

PI-chain. Proceeding analogously, we find a PI-chain in at most |W ′| steps. �

The above theorem naturally suggests an algorithm which returns a stable and Pareto

efficient matching: First obtain a stable matching by applying the DA algorithm to a

tie-breaking. So long as the matching is not Pareto efficient, by Theorem 1, there will

be a PI-cycle or a PI-chain. If so, find one and carry it out to obtain a Pareto improving

matching. Since the original matching is stable, the new matching continues to be stable

by Lemma 1. Repeat this as long as the obtained matching has a PI-cycle or a PI-chain.

A more precise description can be found in Appendix A.3.

By the finiteness of our model one cannot keep Pareto improving indefinitely, hence

the procedure will stop after finitely many steps and yield a Pareto efficient matching.

The fact that we started with a stable matching guarantees that each matching along

the procedure, and in particular the final matching, is stable. We call this procedure

the Efficient and Stable Matching Algorithm (ESMA). We show in Proposition

1 in Appendix A.3, that the ESMA is polynomial in the number of workers and the

total number of positions.17 Computational efficiency of the algorithm is thanks to its

ability to discover PI-cycles and PI-chains quickly. It is worth noting that, unlike the

stable improvement cycles algorithm of Erdil and Ergin (2008), a straightforward depth-

first-search for cycles in a directed graph is not sufficient in this setting. Instead we rely

on Tarjan’s (1972) algorithm to explore a graph’s strongly connected components. See

Appendix A.3 for the details.

In the domain of strict preferences, it is well known (Roth, 1982) that when both

sides of the market are strategic actors, no stable mechanism is strategy-proof.18 Since

our domain with weak preferences generalize that of strict preferences, the impossibility

result automatically extends.

17To be more accurate, the procedure we describe above corresponds to a family of algorithms because

of the way we order the agents and the firms in various steps will affect the outcome. By specifying a

precise a selection rule, we can completely describe a deterministic mechanism. We present one such

rule in the Appendix.
18Perhaps surprisingly, however, if agents’ preferences are dichotomous in the sense that each agent is

indifferent between all partners they find acceptable, Bogomolnaia and Moulin (2004) establish stable,

efficient and strategy-proof mechanisms.
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4 Worker-Optimal Stable Matchings

We next turn to the question of how to compute W -optimal stable matchings. Let µ

be a stable matching for some fixed %. We will say that a worker w weakly [strictly]

desires firm f if µ(w) 6= f and she weakly [strictly] prefers f to her match at µ, that is

f %w µ(w) [f �w µ(w)]. Let Dµ
f denote the set of workers who weakly desire f and are

acceptable to f , such that there is no other worker who strictly desires f and is ranked

strictly higher in %f . Clearly Dµ
f depends on %, too, but for notational simplicity we

suppress the dependence of Dµ
f on the preference profile.

Definition 3 A stable worker improvement (SWI) cycle consists of distinct work-

ers w1, . . . , wn ≡ w0 (n ≥ 2) such that:

(i) Each wt is matched to some firm,

(ii) wt ∈ Dµ
µ(wt+1)

for each t ∈ {0, . . . , n− 1},

(iii) µ(wt+1) �wt µ(wt) for some t ∈ {0, 1, . . . , n− 1}.

Each worker wt in an SWI-cycle weakly desires the employer of the following worker

wt+1. The employer of wt+1 (that is, firm µ(wt+1)) finds wt acceptable.19 And there is

no other worker who strictly desires µ(wt+1), and is ranked strictly higher than wt by

µ(wt+1).

If µ is a stable matching which admits an SWI-cycle, then it can be improved from

the workers’ perspective, to another matching µ′, obtained by letting each worker move

into the firm of the next worker:

µ′(w) =

{
µ(wt+1) if w = wt for some t ∈ {0, . . . , n− 1},
µ(w) otherwise.

By carrying out an SWI-cycle, we mean constructing the new stable matching µ′

which improves µ from the workers’ perspective, as done above. Note that although

workers improve from µ to µ′, firms may become worse-off in the transition, because

unlike in a PI-cycle, in an SWI-cycle we do not require that wt %µ(wt+1) wt+1. Therefore

we cannot rely on Lemma 1 to conclude that µ′ is stable. Instead, condition (ii) is key

in guaranteeing that the new matching µ′ continues to be stable.

19The definition does not rule out the possibility that some workers in an SWI-cycle are matched

with the same firm. However, note that no two consecutive workers in an SWI-cycle are matched with

the same firm, because for a worker wt to desire µ(wt+1), it must be that µ(wt) 6= µ(wt+1).
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Lemma 2 Let µ be a stable matching which admits an SWI-cycle. Then the matching

µ′ obtained by carrying out the SWI-cycle is stable as well.

Proof. µ is individually rational, because it is stable to begin with. Since µ′ makes all

workers weakly better off, it is individually rational from workers’ perspective. Secondly,

the definition of Dµ
f and condition (ii) ensure that no firm admits an unacceptable worker

as part of an SWI-cycle, therefore µ′ is individually rational for firms as well. Hence,

suppose, for a contradiction, that (w, f) is a blocking pair for µ′. That is, f �w µ′(w)

and w �f v for some v with µ′(v) = f . All workers weakly prefer µ′ to µ, and in

particular µ′(w) %w µ(w), therefore we must have f �w µ(w).

If f is not part of the SWI-cycle, then it has the same set of workers under both

matchings µ and µ′. In particular µ(v) = f . Since f �w µ(w), matching µ is blocked

by (w, f), contradicting stability of µ. Thus f is part of the SWI-cycle. Say f = µ(wt)

for some t.

We know that w desires f at µ. Stability of µ implies that according to %f every

worker matched with f under µ is ranked at least as high as w. Condition (ii), on the

other hand, implies that whoever moved to f via the SWI-cycle generating µ′ from µ is

weakly preferred to w by f . Thus, every worker matched with f under µ′ is ranked at

least as high as w, contradicting with (w, f) being a blocking pair for µ′. �

Definition 4 A stable worker improvement (SWI) chain consists of distinct work-

ers w1, . . . , wn (n ≥ 2) and a firm f with an empty position such that:

(i) a. If w1 is matched to a firm, then no worker in W strictly desires and is ac-

ceptable to µ(w1),

b. wt is matched to some firm for each t ∈ {2, . . . , n},

(ii) wt ∈ Dµ
µ(wt+1)

for each t ∈ {1, . . . , n− 1}, and wn ∈ Dµ
f ,

(iii) µ(wt+1) �wt µ(wt) for some t ∈ {1, . . . , n− 1}.

Each worker wt in an SWI-chain except wn, weakly desires the firm of the following

worker wt+1, and as in an SWI-cycle, the employer µ(wt+1) of the latter finds wt accept-

able. Also, there is no other worker who strictly desires µ(wt+1) and is ranked strictly

higher than wt by µ(wt+1). The last worker wn weakly desires and is acceptable to f .20

20Similar to Footnote 15, the definition of an SWI-chain can be embedded into that of an SWI-cycle.
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If there is an SWI-chain, then the matching µ can be improved from the workers’

perspective, to a new stable matching µ′ obtained by letting each worker other than wn

move into the firm of the next worker and letting wn move to f :

µ′(w) =


µ(wt+1) if w = wt for some t ∈ {1, . . . , n− 1},

f if w = wn,

µ(w) otherwise.

This construction of the new stable matching µ′ which improves µ from the workers’

perspective is what we call carrying out an SWI-chain. As in an SWI-cycle, although

workers improve from µ to µ′, firms may become worse-off in the transition and we can

again not make use of Lemma 1 to conclude that µ′ is stable. Like in the proof of Lemma

2, condition (ii) plays the analogous key role in guaranteeing that µ′ is stable.

We are now ready to state our second structural theorem which states that the

converse of the above observations holds. Namely, if µ is stable and admits no SWI-

cycles nor SWI-chains, then µ must be W -optimal stable. The proof can be found in

Appendix A.2.

Theorem 2 A stable matching µ is W -optimal stable if and only if there are no SWI-

cycles nor SWI-chains.

The theorem suggests a procedure to find a W -optimal stable matching: First obtain

a stable matching by applying the DA algorithm to a tie-breaking. So long as the stable

matching is not W -optimal stable, by Theorem 2, there will be an SWI-cycle or an SWI-

chain. If that is the case, find an SWI-cycle or an SWI-chain and carry it out to obtain

a new stable matching that improves the original one from the workers’ perspective.

Repeat this as long as the obtained stable matching has an SWI-cycle or SWI-chain. A

precise description of this procedure is in Appendix A.3.

By finiteness of our model, the procedure will stop after finitely many steps and yield

a W -optimal stable matching. We call this procedure the Worker-Optimal Stable

Matching Algorithm (WOSMA). We show in Proposition 2 in Appendix A.3, that

the WOSMA is polynomial in the number of workers and the number of firms.

Suppose that a stable matching µ admits an SWI-chain w1, . . . , wn and f . Then at

µ, f has an empty position and wn weakly desires f (in particular wn is not matched

to f). The worker wn must be indifferent between µ(wn) and f for otherwise (wn, f)

would form a blocking pair for µ. In particular if µ is stable and if the workers have

strict preferences, then µ does not admit any SWI-chains. Thus, when workers have
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strict preferences, a stable matching is worker-optimal stable if and only if there are

no stable worker improvement cycles. Assuming strict preferences for workers brings us

back to the framework of Erdil and Ergin (2008), where students have strict preferences,

whereas schools’ priority rankings over students have ties. In that setup, if µ and ν are

stable matchings such that ν �W µ, then there exist stable matchings µ1, . . . , µn such

that µ = µ1, ν = µn, and µt+1 is obtained by carrying out an SWI-cycle at µt, for

t ∈ {1, . . . , n − 1}. That is, if workers prefer a stable matching ν to another stable

matching µ, then ν can be reached from µ by a sequence of SWI-cycles. An analogue

of this result does not hold in our framework where both sides have weak preferences.

Even if ν �W µ, where µ and ν are both stable matchings we do not necessarily have a

sequence of SWI-cycles and SWI-chains that take us from µ to ν. This is because there

might be moves from one matching to the other that do not affect any worker’s welfare,

and therefore would be impossible to execute by improving chains or cycles.

Given preferences, WOSMA finds a worker-optimal stable matching. However, there

is one final round of improvements possible, and that’s from the firms’ perspective.

By employing ESMA, or to be more precise, by finding Pareto improving cycles and

carrying them out, we can improve over the WOSMA outcome according to the firms’

preferences.21

When all preferences are strict, Dubins and Freedman (1981) and Roth (1982) show

that the worker-proposing DA (which yields the unique worker-optimal stable matching)

is strategy-proof from workers’ perspective. In contrast, ties in firms’ preferences imply

that even when only workers are strategic, there is no strategy-proof mechanism which

achieves worker-optimal stability (Erdil and Ergin, 2008). In particular WOSMA is not

strategy-proof even if only workers are strategic.

5 Single Tie-breaking and Pareto Efficiency

While our understanding of the effects of different tie breaking rules in matching markets

has been limited, the conventional wisdom in the literature suggests that efficiency loss

arising from tie-breaking increases when different agents break their ties differently,

21If we apply the model to a school choice problem where school priority rankings over students are

interpreted as exogenous constraints, then Kesten’s (2010) relaxation of the stability notion (by allowing

students to consent to their priorities to be violated when they are not hurt by such violations) yields

outcomes which Pareto dominate WOSMA from students’ perspective at the expense of respecting

priorities and “schools’ welfare.”
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which is likely to be the case if tie-breaking is de-centralized. In the example we discussed

in the introduction, all agents used a single tie-breaking rule (the alphabetical one),

which resulted in efficiency loss. However, if they used another single tie-breaking, the

reverse alphabetical, then we would reach the unique efficient stable matching in that

example. Is it possible to reach all stable and Pareto efficient matchings by focusing on

single tie-breaking rules? The following example shows that it is not.22

Example 1 Suppose there are two workers, w and v, and two firms, f and g. Both

firms have two positions each, that is, qf = qg = 2. If the preferences are given as

%w %v
f, g f, g

%f %g
w w

v v

,

then the efficient and stable matching µ = (wf, vg) is not stable at any single tie-

breaking, because both workers would end up with the firm which is ranked higher

by the tie-breaking rule. Hence there may be Pareto efficient (also W -optimal) stable

matchings which cannot be reached by using the (worker proposing) DA algorithm after

all possible ways of single tie-breaking. �

If, however, the workers have strict preferences, single tie-breaking never leads to an

efficiency loss as shown below.

Theorem 3 Let % be a preference profile where workers have strict preferences. If %′ is

a single tie-breaking of % and if µ is stable with respect to %′, then µ is Pareto efficient

at %.

Proof. Let φW : W → {1, . . . , |W |} be a bijection that induces the tie-breaking %′F .

Suppose for a contradiction that µ is Pareto dominated by a matching ν at %. Since

the workers have strict preferences, their being indifferent between µ and ν would imply

that µ = ν, therefore some worker(s) must strictly prefer ν to µ at %. We also know by

Lemma 1 that ν is stable, therefore µ is not W -optimal stable at %.

By Theorem 1 in Erdil and Ergin (2008), there exist stable matchings µ1, . . . , µn

such that µ = µ1, ν = µn, and µt+1 is obtained by carrying out an SWI-cycle at µt, for

t ∈ {1, . . . , n− 1}. Note that µt %F µt+1, for otherwise if the tth SWI-cycle rematches a

22It is an open question whether there is always a single tie-breaking at which there is a stable and

Pareto efficient matching. Theorem 4 below answers this question affirmatively when each firm has one

position only.
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firm f to a worker w such that w �f w′ for some w′ ∈ µ−1t (f), then (w, f) would block

µt, a contradiction. Hence µ = µ1 %F µ2 %F · · · %F µn = ν. We also have that ν %F µ

since ν Pareto dominates µ, therefore µ = µ1 ∼F µ2 ∼F · · · ∼F µn = ν.

Let w1, . . . , wn be the SWI-cycle at µ = µ1 above. Then µ(wt+1) �wt µ(wt) and

wt ∼µ(wt) wt+1 for t ∈ {0, 1, . . . , n − 1}, which, by the definition of the single tie-

breaking %′F , implies that φW (w0) < φW (w1) < · · · < φW (wn−1) < φW (wn) = φW (w0),

a contradiction. �

A directed graph G is acyclic if it has no cycles. A topological ordering of

a directed graph is a bijection φ : X → {1, . . . , |X|} such that x → y implies that

φ(x) ≥ φ(y). It is not hard to see that a directed graph is acyclic if and only if it is

topologically ordered.

Theorem 4 If each firm has one position and µ is stable and Pareto efficient at %,

then there exists a single tie-breaking %′ such that µ is stable with respect to %′.

Proof. Assume that µ is Pareto efficient and stable at %. We will construct the

single tie breaking %′ in two steps, by first breaking the ties in firms’ preferences and

then those in workers’ preferences.

Consider a directed graph G with vertex set W , where w → v if v is matched to a

firm, µ(v) �w µ(w), and w ∼µ(v) v. Such an edge means that w strictly envies v, and

the firm µ(v) would not mind replacing v with w. Pareto efficiency of µ implies that

this graph is acyclic: If the graph has a cycle w0 → w1 → · · · → wn−1 → wn ≡ w0,

then the new matching obtained by rematching each worker wt in the cycle to µ(wt+1)

for t ∈ {0, . . . , n − 1}, would Pareto dominate µ. Let φW : W → {1, . . . , |W |} be a

bijection inducing a topological ordering of G. Let %′F denote the single tie-breaking of

%F induced by φW .

By NI∅ and individual rationality of µ before the tie-breaking, µ continues to be

individually rational after the tie-breaking. Suppose that (w, f) blocks µ at (%W ,%′F ),

i.e. f �w µ(w) and w �′f µ−1(f). Stability of µ at % implies that w ∼f µ−1(f),

in particular by NI∅, f is matched to a worker v. Note that w → v since at %, w

strictly envies v, and the firm f = µ(v) would not mind replacing v with w. Hence

φW (w) ≥ φW (v), a contradiction to w ∼f v and w �′f v. We conclude that µ is stable

at (%W ,%′F ).

Next consider an analogous directed graph G′ with vertex set F , where f → g if g

is matched to a worker, µ−1(g) �′f µ−1(f), and f ∼µ−1(g) g. Suppose that there is a

21



cycle f0 → f1 → · · · → fn−1 → fn ≡ f0. Consider the new matching µ′ obtained by

rematching each firm ft in the cycle to µ−1(ft+1) for t ∈ {0, . . . , n−1}. At (%W ,%′F ), all

workers, as well as the firms not involved in the cycle are indifferent between µ and µ′,

whereas all the firms involved in the cycle strictly prefer µ′ to µ. No firm strictly prefers

µ′ to µ at %, since otherwise µ′ would Pareto dominate µ at %. Since µ−1(ft+1)P �′ft
µ−1(wt) and µ−1(ft+1) ∼ft µ−1(wt) for t ∈ {0, . . . , n − 1}, by the definition of the

single tie-breaking %′F , we have φW (µ−1(f0)) = φW (µ−1(fn)) < φW (µ−1(fn−1)) < · · · <
φW (µ−1(f1)) < φW (µ−1(f0)), a contradiction. Therefore G′ is acyclic, let φF : F →
{1, . . . , |F |} be a bijection inducing a topological ordering of G′. Let %′W be the single

tie-breaking of %W induced by φF . By the same argument as in the above paragraph

switching the roles of firms and workers, we conclude that µ is stable with respect to

(%′W ,%
′
F ). �

One implication of this theorem is that when the matching environment is one-to-

one, all stable and Pareto efficient matchings can be discovered by restricting to single

tie-breakings only. While such a restriction is a significant reduction in the number of

tie-breakings to consider, and exhaustive exploration through them all would still be

computationally prohibitive in most applications.

Finally, by combining Theorems 3 and 4, we get the following equivalence result.

Corollary 2 Assume that each firm has one position and one side has strict preferences

at %. Then µ is stable and Pareto efficient at % if and only if there exists a single tie-

breaking %′ such that µ is stable at %′.

6 Conclusion

We took as our motivation a number of simple observations: when indifferences are

incorporated into standard models of two-sided matching, stability no longer implies

Pareto efficiency, and the celebrated deferred acceptance algorithm is not guaranteed to

produce a Pareto efficient or a worker-optimal stable matching. We have explored the

structure of the set of stable matchings to characterize the nature of Pareto relations

between stable matchings. By using the simple operations that capture these relations,

we have designed new algorithms, ESMA and WOSMA, to find an efficient and stable

matching, and a worker-optimal stable matching, respectively.

Ties in preference rankings are increasingly common. With the surge of matching

platforms, online and offline, participants frequently need to evaluate large numbers of

22



possible partners. Faced with the task of comparing hundreds of alternatives, it is a

lot easier to mark them on a discrete scale of 1 to 5, than forming a strict ranking.

Instead of going through candidates’ profiles, an employer might rather submit criteria

to a matchmaker, who, in turn, would derive the employer’s ranking from such criteria.

It is important for these platforms to help participants reach efficient outcomes quickly.

In order to fulfil that role successfully, the matchmaker has to handle ties carefully, and

our algorithms, by their intuitive and fast nature, answer the need for quick and efficient

matchmaking.

A Appendix

A.1 Characterization of a minimal responsive extension

We now prove the observation from Section 2: I %f J if and only if the sets I and J

can be indexed as I : i1, . . . , in and J : j1, . . . , jn, where for each worker short of n a

copy of ∅ is written and it %f jt for each t ∈ {1, . . . , n}
In order to see the “if” part, note that if such indexing of I and J exist, it is

straightforward to verify that I%̃J for every responsive extension of %.

For the “only if part,” given sets I %f J , index the elements in I and J in decreasing

preference order, that is, i1 % i2 %f · · · %f in and j1 % j2 %f · · · %f jn, respectively.

We are claiming that it %f jt for all t = 1, . . . , n. Suppose, for a contradiction, the

contrary, and let k be the smallest index for which jk �f ik.
Let v : W → R be a function capturing the value of each worker to a firm whose

valuation of sets of workers is additive. Set these values so that v(jk) > v(`) + 1 for all

workers i such that jk �f `, whereas v(`) − v(jk) < ε for all workers ` with ` �f jk.
Since i1 %f i2 %f · · · %f ik−1 %f jk−1 %f jk, the above assumptions on valuations imply

v(i1) + · · ·+ v(ik−1) < v(j1) + · · ·+ v(jk−1) + (k − 1)ε.

Setting ε < 1/(k − 1), we obtain

v(i1) + · · ·+ v(ik−1) + v(ik) < v(j1) + · · ·+ v(jk−1) + v(jk). (?)

Now, consider additive preferences over sets of workers in the sense that a set S of

workers is of value
∑

`∈S v(`), and higher value corresponds to higher preference. It is

trivially verified that such additive preferences constitute a responsive extension of %f
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according to which J must be preferred to I, because v(I) < v(J) as seen in (?). But

remember the definition of a minimal responsive extension: we write I %f J only if

I%̃fJ for every responsive extension of %f . This yields the contradiction with the above

additive preferences ranking J strictly higher than I. �

A.2 Proof of Theorem 2

Apart from SWI-chains and SWI-cycles, it will be useful for the purposes of the proof

to consider chains and cycles that do not change any worker’s welfare.

Definition 5 Given two matchings µ and ν, a reversible cycle from µ to ν consists

of distinct workers w1, . . . , wn ≡ w0 (n ≥ 2) such that:

(i) Each wt is matched to some firm both at µ and ν,

(ii) ν(wt) = µ(wt+1) 6= µ(wt) for t ∈ {0, 1, . . . , n− 1},

(iii) µ(wt) ∼wt ν(wt) for t ∈ {1, . . . , n}.

In a reversible cycle, consecutive workers are matched with distinct firms. Each

worker wt moves to the position held by worker wt+1, but is indifferent between her

position under µ, and the position she is moving to.

Definition 6 Given two matchings µ and ν, a reversible chain from µ to ν consists

of distinct workers w1, . . . , wn (n ≥ 1) and a firm f with an empty position at µ such

that:

(i) a. Each wt is matched to some firm both at µ and ν,

b. µ(w1) has an empty position at ν,

(ii) ν(wn) = f and ν(wt) = µ(wt+1) 6= µ(wt) for t ∈ {1, . . . , n− 1},

(iii) µ(wt) ∼wt ν(wt) for t ∈ {1, . . . , n}.

If there is a reversible cycle [chain] from µ to ν, to reverse such a cycle [chain] will

mean replacing ν with ν ′ by simply reassigning the workers who are involved in the cycle

[chain] back to their firms at µ, i.e.,

ν ′(w) =

{
µ(w) if w is involved in the reversible cycle [chain]

ν(w) otherwise.

Clearly, the reversing process does not effect the welfare of the workers.
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Lemma 3 Assume that µ and ν are stable matchings such that ν %W µ. If ν ′ is obtained

by reversing a reversible cycle or chain from µ to ν, then ν ′ is also stable.

Proof. Let µ, ν, and ν ′ be as in above. Take any firm f and worker w such that

f = ν ′(w). Then by the definition of ν ′, f = ν(w) or f = µ(w). Since both µ and ν are

individually rational, i.e., f %w ∅ and w %f ∅, ν ′ is individually rational, too.

Suppose for a contradiction that (w, f) is a blocking pair for ν ′. Then (i) f �w ν ′(w)

and (ii.a) w �f v for some v ∈ ν ′−1(f), or (ii.b) w �f ∅ and f has an empty position

at ν ′. Since ν ′ ∼W ν %W µ, we have (i.ν) f �w ν(w) and (i.µ) f �w µ(w). In case

(ii.a), f is matched to v at ν or µ, which along with (i.ν) and (i.µ) imply that ν or µ is

unstable, a contradiction. In case (ii.b), f has an empty position at ν or µ, which along

with (i.ν) and (i.µ) imply that ν or µ is unstable, again a contradiction. �

If µ is a stable matching that is not W -optimal stable, then there exists a stable

matching ν0 such that ν0 �W µ. If there are any reversible cycles or chains from µ

to ν0, by Lemma 3, we can arbitrarily select one and reverse it to obtain a new stable

matching ν1 such that ν1 ∼W ν0 �W µ. If there exist any reversible chains or cycles from

µ to ν1, by Lemma 3, we can again arbitrarily select one and reverse it to obtain a yet

another stable matching ν2 such that ν2 ∼W ν1 ∼W ν0 �W µ. Proceeding analogously,

we will eventually obtain a stable matching ν such that ν �W µ and there are no

reversible cycles or chains from µ to ν. We summarize this observation in the following

Lemma.

Lemma 4 If µ is a stable matching that is not W -optimal stable, then there exists a

stable matching ν such that ν �W µ and there are no reversible cycles nor chains from

µ to ν.

Lemma 5 Let µ be a stable matching and ν be an individually rational matching such

that ν �W µ. Assume that µ does not admit an SWI-cycle nor an SWI-chain, and that

there are no reversible cycles nor chains from µ to ν. Then each firm f is matched to

at least as many workers at µ as at ν.

Proof. Let W ′ = {w ∈ W : µ(w) 6= ν(w)}. For each firm f , if there exists a worker

u ∈ W who strictly desires f at µ and is acceptable to f , then fix uf to be a highest

ranked such u with respect to %f . Otherwise we will say that “uf does not exist.” If

uf does not exist and there exists v ∈ W ′ such that ν(v) = f , then fix vf to be any

such v. Otherwise, i.e., if uf exists or if there is no v ∈ W ′ such that ν(v) = f , we will
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say that “vf does not exist.” By definition uf and vf cannot co-exist. If uf exists then

f �uf µ(uf ) and uf ∈ Dµ
f . If vf exists, then f = ν(vf ) 6= µ(vf ), f = ν(vf ) ∼vf µ(vf ),

and vf ∈ Dµ
f . 23

A finite sequence (w1, . . . , wn) of n ≥ 1 workers is of Type I if (i) they are all

distinct, (ii) each one is matched to some firm both at µ and ν, (iii) ν(w1) has an empty

position at µ, (iv.a) w1 = vν(w1), and (iv.b) wt+1 = vµ(wt) for t ∈ {1, . . . , n − 1}. Note

that in a Type I sequence, ν(wt) ∼wt µ(wt) and wt ∈ Dµ
ν(wt)

for each t ∈ {1, . . . , n}.
A finite sequence (w1, . . . , wn) of n ≥ 2 workers is of Type II if (i) they are all

distinct, (ii) there exists a k ≤ n − 1 such that: (ii.a) (w1, . . . , wk) is of Type I, (ii.b)

each one of wk+1, . . . , wn is matched to some firm at µ, and (ii.c) wt+1 = uµ(wt) for

t ∈ {k, . . . , n−1}. Note that in a Type II sequence, ν(wt) ∼wt µ(wt) and wt ∈ Dµ
ν(wt)

for

each t ∈ {1, . . . , k}; and µ(wt−1) �wt µ(wt) and wt ∈ Dµ
µ(wt−1)

for each t ∈ {k+1, . . . , n}.
We will show in step 1 below that, if there exists a Type I sequence of length n ≥ 1,

then there exists a Type I or Type II sequence of length n + 1. We will prove in step

2 that, if there exists a Type II sequence of length n ≥ 2, then there exists a Type II

sequence of length n+1. The two steps imply that there cannot be any Type I sequence

of length one, otherwise it is possible to generate an arbitrarily large sequence of distinct

workers, contradicting finiteness of W . To see that this is enough to prove the lemma,

suppose that there exists a firm f who is matched to less workers at µ than at ν. Then

f must have an empty position at µ. By stability of µ and NI∅, uf does not exist. Since

f is matched to more workers at ν, vf exists. Since f = ν(vf ) ∼νf µ(vf ), by NI∅, vf

is matched to a firm at µ. Hence (vf ) constitutes a Type I sequence of length one, a

contradiction. It remains to prove steps 1 and 2.

Step 1: Let (w1, . . . , wn) be a Type I sequence. Then µ(wn) does not have an

empty position at ν, since otherwise wn, . . . , w1 (yes, in the reverse order) and ν(w1)

would constitute a reversible chain from µ to ν. Since ν(wn) 6= µ(wn) and the positions

of µ(wn) are full at ν, there exists a worker in W ′ matched to µ(wn) at ν. Hence either

uµ(wn) or vµ(wn) exists.

If uµ(wn) exists, let wn+1 = uµ(wn). Since µ(wn) 6= µ(uµ(wn)), wn+1 6= wn. Also wn+1

is distinct from w1, . . . , wn−1, because otherwise if wn+1 = wk for some k ≤ n− 1, then

wn+1, wn, wn−1, . . . , wk+1 (yes, in this order) would constitute an SWI-cycle. Moreover,

23This last inclusion uses individual rationality of ν. vf is matched to f at ν, so she must be

acceptable to f . But since there are no workers that strictly desire f and are acceptable to f (since

uf does not exist), vf does not strictly desire f (and since ν �W µ, vf must be indifferent between

f = ν(vf ) and µ(f)).

26



wn+1 must be matched to a firm at µ, since otherwise wn+1, wn, wn−1, . . . , w1 and ν(w1)

would constitute an SWI-chain. Hence in this case (w1, . . . , wn, wn+1) is a Type II

sequence of length n+ 1.

If vµ(wn) exists, let wn+1 = vµ(wn). Since µ(wn) 6= µ(vµ(wn)), wn+1 6= wn. Also

wn+1 is distinct from w1, . . . , wn−1, for otherwise if wn+1 = wk for some k ≤ n− 1, then

wn+1, wn, wn−1, . . . , wk+1 would constitute a reversible cycle from µ to ν. Moreover,wn+1

must be matched to a firm at µ, because of the NI∅ assumptions, her indifference be-

tween µ and ν, and her being matched with µ(wn) at ν. Thus, in this case (w1, . . . , wn, wn+1)

is a Type I sequence of length n+ 1.

Step 2: Let w1, . . . , wn (n ≥ 2) be a Type II sequence where k is as in part (ii) of

the definition of a Type II sequence. There exists a worker who strictly desires µ(wn) at

µ and is acceptable to µ(wn), because otherwise wn, . . . , w1 and ν(w1) would constitute

an SWI-chain. Hence uµ(wn) exists.

Let wn+1 = uµ(wn). Since µ(wn) 6= µ(uµ(wn)), wn+1 6= wn. Also wn+1 is dis-

tinct from w1, . . . , wn−1, because otherwise if wn+1 = wk for some k ≤ n − 1, then

wn+1, wn, wn−1, . . . , wk+1 would constitute an SWI-cycle. Moreover, wn+1 must be matched

to a firm at µ, for otherwise wn+1, wn, wn−1, . . . , w1 and ν(w1) would constitute an SWI-

chain. Hence in this case (w1, . . . , wn, wn+1) is a Type II sequence of length n + 1.

�

Lemma 6 Let µ be a stable matching and ν be an individually rational matching such

that ν �W µ. Assume that µ does not admit an SWI-cycle nor an SWI-chain and that

there are no reversible cycles nor chains from µ to ν. Let W ′ = {w ∈ W : µ(w) 6= ν(w)}
and F ′ = µ(W ′). Then:

(i) For each firm f , the number of workers in W ′ who are matched to firm f is the

same at µ and ν. In particular, F ′ = ν(W ′).

(ii) Each worker in W ′ is matched to a firm in both µ and ν.

Proof. By ν �W µ, individual rationality of µ, and NI∅, each worker in W ′ is

matched to a firm at ν. To see part (i), note that Lemma 5 implies that |W ′∩µ−1(f)| ≥
|W ′∩ ν−1(f)| for any firm f . Suppose that the inequality |W ′∩µ−1(f)| ≥ |W ′∩ ν−1(f)|
holds strictly for some firm f ∗. Summing across all firms we have:∑

f∈F

|W ′ ∩ µ−1(f)| >
∑
f∈F

|W ′ ∩ ν−1(f)|.
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That is, the number of workers in W ′ matched to some firm atµ is more than the number

of workers in W ′ matched to some firm at ν. This implies that there exists a worker in

W ′ who is unmatched at ν, a contradiction. Part (ii) follows from part (i) and the fact

that each worker in W ′ is matched to a firm at ν. �

Proof of Theorem 2. It only remains to prove the “if” part. Assume that µ is

stable but not W -optimal stable. By Lemma 4, there exists a stable matching ν such

that ν �W µ and there are no reversible cycles nor chains from µ to ν. Suppose for

a contradiction that µ admits no SWI-cycle nor SWI-chain. Let W ′ and F ′ be as in

Lemma 6. That is, W ′ is the set of workers for whom the match has changed from µ to

ν, and F ′ is the set of firms with whom these workers are matched at µ.

For any f ∈ F ′, let W ′
f denote the set of workers in W ′ who weakly desire f at µ,

and are acceptable to f , such that there is no other worker in W ′ who strictly desires

f and is ranked strictly higher in %f . By Lemma 6, f ∈ F ′ = ν(W ′), hence there

exist workers in W ′ who are matched to f at ν. Those workers who have left the firm

they were matched with at µ, and are now matched with f under ν must have weakly

improved since ν �W µ. Hence, the set of workers W ′ who weakly desire f at µ, and

are acceptable to f is nonempty. In particular, W ′
f is nonempty.

If there is any worker in W ′
f who is matched to f at ν, fix wf to be such a worker who

is ranked highest with respect to %f . If not, all those workers in W ′ who are matched

to f at ν are ranked lower than some worker w′ ∈ W ′
f who strictly desires f at µ; and

wf to be one such worker. Note that if u ∈ W ′ is matched to f at ν, then wf %f u.

Also note that µ(wf ) ∈ F ′ and µ(wf ) 6= f .

We next show that wf ∈ Dµ
f . Suppose not, then there is a worker v /∈ W ′ who strictly

desires f and is strictly higher in %f than wf . Since v /∈ W ′, ν(v) = µ(v), therefore

f �v ν(v). Let u be a worker in W ′ who is matched to f at µ, then v �f wf %f u, a

contradiction to the stability of ν.

Now, consider a directed graph G with vertex set F ′, where for each firm f there

is a unique incoming edge given by µ(wf ) → f . Since each firm in F ′ is pointed to by

a different firm in F ′, there exists a cycle f1, . . . , fn = f0 in F ′.24 Let wt = wft+1 for

t ∈ {0, . . . , n − 1}. Since ft → ft+1 and wt = wft+1 , we have µ(wt) = ft. In particular

w1, . . . , wn are distinct and each one is matched to some firm at µ. By construction

wt ∈ Dµ
µ(wt+1)

, and if µ(wt+1) ∼wt µ(wt), then ν(wt) = µ(wt+1), for t ∈ {0, 1, . . . , n− 1}.
Hence w1, . . . , wn constitute either an SWI-cycle or a reversible cycle from µ to ν, a

24Remember that our definition of a cycle in a graph requires that the vertices are distinct and n ≥ 2.
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contradiction. �

A.3 The Algorithms and Their Time Complexity Analysis

In this section we give precise descriptions of the algorithms announced earlier. In doing

so we introduce the notion of a 2-labeled graph and a strict cycle, and then establish

an upper bound on the time complexity of strict cycle search on a 2-labeled graph in

Lemma 7. In Propositions 1 and 2, we use this result to establish that the algorithms

introduced are polynomial time.

An algorithm being of polynomial time means that the time required in order for

it to return its outcome or halt is a polynomial in the size of its input. This property

becomes especially important as the size of the input grows. In the problems studied

in this paper, even with 100 agents, there are 100! (more than 10145) different ways

of single tie-breaking, and many more arbitrary tie breaking rules. Therefore methods

of exhaustion are not computationally feasible. On the other hand, polynomial time is

a theoretical benchmark for ‘algorithmically efficient’ computation. Time complexity

is expressed via the big-Oh notation, as the theory is concerned with the asymptotic

behavior of the number of steps it takes to complete the algorithm as a function of

the size of the problem. However, such notation can hide arbitrarily large constants,

and may not always give a realistic sense of what the actual running times in practice

could be. Partly to address this issue, we conducted simulations for our earlier paper,

Erdil and Ergin (2008), where the indifference classes had several hundred agents. We

confirmed that on an average desktop computer, with such data set as the input, the

actual running time was always at most a few minutes.

Given a directed graph G = (V,E), a path from a vertex x to a vertex y is a sequence

of distinct vertices x1, . . . , xn such that x = x1 → x2 → · · · → xn = y. A directed graph

is called strongly connected if for every pair of vertices x and y there is a path from

x to y and a path from y to x. The strongly connected components of a directed graph

are its maximal strongly connected subgraphs. These form a partition of the graph.

A 2-labeled graph25 is a graph G = (V,E) and a function ` : E → {0, 1}. That is,

each edge is assigned one of the two labels.

We will denote the edges labeled 0 with x → y, and those labeled 1 with x � y.

The edges labeled 1 will be called strict edges of G. A cycle of G with at least one

25We restrict our attention to edge labeled graphs and assume that vertices are not labeled. It is

worth noting that the notion of a labeled graph is different from that of graph labeling.
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strict edge on is called a strict cycle.

Lemma 7 Strict cycle search on a 2-labeled graph G = (V,E) is O
(
|V |+ |E|

)
.

Proof. Note that G has a strict cycle if and only if a strongly connected component

includes a strict edge. Identifying strongly connected components of G is O
(
|V |+ |E|

)
by Tarjan (1972), checking for strict edges is O

(
|E|
)
, and finding a cycle that includes

a specific strict edge is O
(
|V |
)
.26 Hence strict cycle search is O

(
|V |+ |E|

)
. �

Efficient and Stable Matching Algorithm (ESMA)

Given a preference profile %, to a stable matching µ we will associate a 2-labeled

graph Γµ with the vertex set W ∪{∅}, and the edges and their labels specified as follows:

(i) w → v if µ(v) is a firm such that µ(v) %w µ(w) and w %µ(v) v.

(ii) w → ∅ if there is a firm f with an empty position such that f %w µ(w) and

w %f ∅.

(iii) ∅→ w if µ(w) = ∅.

Label the strict edges as follows:

(iv) w � v if w → v and one of the preferences in (i) is strict.

(v) w � ∅ for each w → ∅. 27

Note that in Γµ, a strict cycle with [without] ∅ as one of its vertices, corresponds to

a PI-chain [PI-cycle] at µ. Conversely any PI-chain or PI-cycle at µ corresponds to a

strict cycle of Γµ.

In what follows, let us write Γk instead of Γµ
k

for notational simplicity. Then the

ESMA is described as:

Step 0:

Select a strict preference profile %′ from T (%). Run the DA algorithm and

obtain a temporary matching µ0.

Step t ≥ 1:

26If x � y is such an edge, we need to explore each vertex only once as we employ a depth-first

search starting from y only checking whether there is an edge from the explored vertex back to x.
27Since the second preference in (ii) is always strict by NI∅.
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(t.a) Given µt−1, construct the associated 2-labeled graph Γt−1.

(t.b) Find a strict cycle in Γt−1 if there exists any, let the corresponding

PI-cycle or the PI-chain take place to obtain µt, and go to step (t+ 1.a). If

there is no strict cycle, then return µt−1 as the output of the algorithm.

Note that without specifying the choices involved in the algorithm, the above de-

scription really corresponds to a family of mechanisms. The following selection rule for

tie-breaking, cycles and chains completes the description of the algorithm as a deter-

ministic mechanism: (1) fix an enumeration of firms and workers, and add ∅ as the very

last worker, (2) break all ties according to this order before running the DA in Step 0,

and (3) run Tarjan’s algorithm to identify the strongly connected components (where

the enumeration fixed in (1) is the order in which Tarjan’s search is implemented), (4)

look for strict cycles beginning with exploring the lowest indexed strict edge, and the

lowest indexed edge at every step afterwards, where the edges i → j are ranked in the

lexicographic order for pairs (i, j).

Proposition 1 The ESMA terminates in O
(
|W |3 ·Q

)
time where Q =

∑
f∈F qf .

Proof. Each step t of the ESMA involves a strict cycle search in Γt which is O
(
|W ∪

{∅}+ |E|
)
, where E is the set of edges, by Lemma 7.

The DA algorithm which is conducted initially is O
(
|W |·|F |

)
, hence also O

(
|W |3 ·Q

)
since |F | ≤ Q. From the above paragraph, each subsequent step of the ESMA is O

(
|W |2

)
since |E| ≤ (|W |+1)2. At each step, at least a worker or a firm improves, so these steps

can be repeated at most |W | · |F | times in workers’ favor and |W | · Q times in firms’

favor. Hence the algorithm terminates in O
(
|W |3 ·Q

)
time. �

Worker-Optimal Stable Matching Algorithm (WOSMA)

Given a preference profile %, to a stable matching µ, let us associate a 2-labeled

graph Gµ with the vertex set W ∪ {∅}, and the edges and their labels specified as

follows:

(i) w → v if µ(v) is a firm such that w ∈ Dµ
µ(v).

(ii) w → ∅ if there is a firm f with an empty position such that w ∈ Dµ
f .

(iii) ∅→ w if µ(w) = ∅ or there is no worker who strictly desires and is acceptable to

µ(w).
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Label the strict edges as follows:

(iv) w � v if w → v and µ(v) �w µ(w).

In Gµ a strict cycle with [without] ∅ as one of its vertices, corresponds to an SWI-chain

[SWI-cycle]. Conversely any SWI-chain or SWI-cycle corresponds to a strict cycle of

Gµ.

Let us write Gk instead of Gµk in what follows, for notational simplicity.

Step 0:

Select a strict preference profile %′ from T (%). Run the DA algorithm and

obtain a temporary matching µ0.

Step t ≥ 1:

(t.a) Given µt−1, let Gt−1 be the associated 2-labeled graph as constructed

above.

(t.b) Find a strict cycle in Gt−1, if there exists any, let the corresponding

SWI-cycle or the SWI-chain take place to obtain µt, and go to step (t+ 1.a).

If there is no strict cycle, then return µt−1 as the output of the algorithm.

Proposition 2 The WOSMA terminates in O
(
|W |3 · |F |

)
time.

Proof. Each step t of the WOSMA involves a strict cycle search in Gt which is

O
(
|E|+ |W ∪ {∅}|

)
by Lemma 7.

The DA algorithm which is conducted initially is O
(
|W | · |F |

)
, hence also O

(
|W |3 ·

|F |
)
. From the above paragraph, each subsequent step of the WOSMA is O

(
|W |2

)
since |E| ≤ (|W |+ 1)2. At each step, at least a worker improves, so these steps can be

repeated at most |W | · |F | times. Hence the algorithm terminates in O
(
|W |3 · |F |

)
time.

�
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