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Abstract. Suppose (i) X is a separable Banach space, (ii) C is a convex sub-

set of X that is a Baire space (when endowed with the relative topology) such
that aff(C) is dense in X, and (iii) f : C → R is locally Lipschitz continuous

and convex. The Fenchel-Moreau duality can be stated as

f(x) = max
x∗∈M

[
〈x, x∗〉 − f∗(x∗)

]
,

for all x ∈ C, where f∗ denotes the Fenchel conjugate of f and M = X∗. We
show that, under assumptions (i)–(iii), there is a unique minimal weak*-closed

subset Mf of X∗ for which the above duality holds.

1. Introduction

Throughout, let X denote a real Banach space. Suppose C ⊂ X and f : C → R.
The conjugate (or Fenchel conjugate) of f is the function f∗ : X∗ → R ∪ {+∞}
defined by

f∗(x∗) = sup
x∈C

[
〈x, x∗〉 − f(x)

]
.

When f is a convex function, there is an important duality between f and f∗

known as the Fenchel-Moreau theorem.1 We next present a slight variation of this
classic result when f is locally Lipschitz continuous. We relegate the proofs and
the definitions of certain standard concepts to Section 2.

Lemma 1.1. Suppose C ⊂ X is convex and f : C → R is locally Lipschitz contin-
uous and convex. Then,

(1.1) f(x) = max
x∗∈X∗

[
〈x, x∗〉 − f∗(x∗)

]
for all x ∈ C.

Our main result shows that, under suitable assumptions on X, C, and f , there
is a unique minimal weak*-closed subset of X∗ for which Equation (1.1) holds. As
we will explain in detail momentarily at the end of the Introduction, our result is
motivated by recent work in theoretical economics. To construct this minimal set,
we first introduce some necessary definitions.

Let Cf denote the set of all x ∈ C for which the subdifferential of f at x is a
singleton:

Cf = {x ∈ C : ∂f(x) is a singleton}.
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Let Nf denote the set of functionals contained in the subdifferential of f at some
x ∈ Cf :

Nf = {x∗ ∈ X∗ : x∗ ∈ ∂f(x) for some x ∈ Cf}.

Finally, let Mf denote the closure of Nf in the weak* topology:

Mf = Nf .

We are now ready to state our main result.

Theorem 1.2. Suppose (i) X is a separable Banach space, (ii) C is a convex
subset of X that is a Baire space (when endowed with the relative topology) such
that aff(C) is dense in X, and (iii) f : C → R is locally Lipschitz continuous and
convex. Then, for any weak*-closed M⊂ X∗, the following are equivalent:

(1) Mf ⊂M.
(2) For all x ∈ C, the maximization problem

max
x∗∈M

[
〈x, x∗〉 − f∗(x∗)

]
,

has a solution and the maximum value is equal to f(x).

We present the proof of Theorem 1.2 in Section 2. In Section 3, we provide
counterexamples to illustrate why some of the assumptions in Theorem 1.2 cannot
be relaxed. Example 3.1 shows that if the local Lipschitz continuity assumption
is weakened to continuity in Theorem 1.2, then it is possible to have Mf = ∅.
Example 3.2 shows that Theorem 1.2 fails to hold if the maximum in part (2) is
not assumed to exist and maximum is replaced with supremum. However, in the
special case when f is Lipschitz continuous, Mf is compact and the existence of
the maximum in (2) can be guaranteed by restricting attention to compactM. The
following corollary formalizes this observation:

Corollary 1.3. Suppose X, C, and f satisfy (i)-(iii) in Theorem 1.2 and f is
Lipschitz continuous. Then, Mf is weak* compact, and for any weak*-compact
M⊂ X∗,

Mf ⊂M ⇐⇒ f(x) = max
x∗∈M

[
〈x, x∗〉 − f∗(x∗)

]
∀x ∈ C.

Our motivation for these results comes from decision theory in theoretical eco-
nomics, where elements of C are interpreted as choice objects. The primitive is a
binary relation over C interpreted as an individual’s preferences over C. In several
applications of interest (see, e.g., [4, 5, 6]), such a binary relation can be represented
by a function f satisfying the conditions of Theorem 1.2, i.e., x is preferred to y
if and only if f(x) > f(y). In these applications, the duality formula may be in-
terpreted as the individual’s anticipation that after she chooses x, an unobservable
costly action x∗ will be selected. Her payoff from action x∗ is given by 〈x, x∗〉 and
the cost of the action is given by f∗(x∗). The uniqueness of the minimal subset of
X∗ established in Theorem 1.2 identifies the set of relevant available actions from
the binary relation on C. Identifying the minimal relevant set of maximizers is also
potentially useful in optimization theory where the value function f results from a
maximization as in Equation (1.1).
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2. Proof of Theorem 1.2

We start by briefly stating the definitions of certain standard concepts that will
be used frequently in the sequel.

Definition 2.1. For C ⊂ X, a function f : C → R is said to be Lipschitz continuous
if there is some real number K such that |f(x)−f(y)| ≤ K‖x−y‖ for every x, y ∈ C.
The number K is called a Lipschitz constant of f . A function f is said to be locally
Lipschitz continuous if for every x ∈ C, there exists ε > 0 such that f is Lipschitz
continuous on Bε(x) ∩ C = {y ∈ C : ‖y − x‖ < ε}.
Definition 2.2. Suppose C ⊂ X and f : C → R. For x ∈ C, the subdifferential of
f at x is defined to be

∂f(x) = {x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ f(y)− f(x) for all y ∈ C}.
Definition 2.3. The affine hull of a set C ⊂ X, denoted aff(C), is defined to be
the smallest affine subspace of X that contains C.

The proof of Theorem 1.2 relies on a key intermediate result generalizing the
theorem of Mazur (1933) on the generic Gâteaux differentiability of continuous
convex functions. Mazur [10] showed that if X is a separable Banach space and
f : C → R is a continuous convex function defined on a convex open subset C of X,
then the set of points x where f is Gâteaux differentiable is a dense Gδ set in C.2

We next extend Mazur’s theorem by replacing the assumption that C is open with
the weaker assumptions that C is a Baire space (when endowed with the relative
topology) and that the affine hull of C is dense in X.

Theorem 2.4. Suppose X, C, and f satisfy (i)-(iii) in Theorem 1.2. Then, the
set of points x where ∂f(x) is a singleton is a dense Gδ set (in the relative topology)
in C.

Note that Mazur’s theorem is a special case of Theorem 2.4. First, if C is an
open subset of X, then C is a Baire space and aff(C) = X. Second, any continuous
convex function f defined on an open set C is locally Lipschitz continuous (see [11,
Proposition 1.6]). Therefore, if C is open, then our continuity assumption coincides
with that of Mazur’s theorem. Finally, it is a standard result that a continuous
convex function f defined on an open set C is Gâteaux differentiable at a point x
if and only if the subdifferential ∂f(x) is a singleton set (see [11, Proposition 1.8]).
Thus, if C is open, then the conclusion of Theorem 2.4 also coincides with the
conclusion of Mazur’s theorem.

The equivalence of assumptions described in the previous paragraph need not
hold if C is not open, and we provide two examples in Section 3 to illustrate.
We show in Example 3.1 that there exists a set C satisfying the assumptions of
Theorem 2.4 and a function f : C → R that is both continuous and linear on C
such that ∂f(x) is not a singleton for any x ∈ C. By Theorem 2.4, this implies that
f is not locally Lipschitz continuous. In Example 3.3, we show that there exists a
set C and a function f : C → R satisfying the assumptions of Theorem 2.4 such
that f is not Gâteaux differentiable at any x ∈ C.

We will present a direct proof of Theorem 2.4 which follows a similar approach
to the proof of Mazur’s theorem found in [11]. Theorem 2.4 can be shown to follow

2For a textbook treatment, see [11, Theorem 1.20]. An equivalent characterization in terms of
closed convex sets and smooth points can be found in [9, p171].
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indirectly from results in [1, 2, 7, 8, 12, 13]. We present the direct proof because it
is self-contained and constructive.

We begin by establishing that the subdifferential of a Lipschitz continuous and
convex function is nonempty at every point.

Lemma 2.5. Suppose C is a convex subset of a Banach space X. If f : C → R
is Lipschitz continuous and convex, then ∂f(x) 6= ∅ for all x ∈ C. In particular, if
K ≥ 0 is a Lipschitz constant of f , then for all x ∈ C there exists x∗ ∈ ∂f(x) with
‖x∗‖ ≤ K.

Proof. We only outline the proof of this lemma since it is standard. Fix any x ∈ C,
and define

H(x) = {(y, t) ∈ X × R : t < f(x)−K‖y − x‖}.
Then, H(x) and epi(f) are disjoint, where epi(f) denotes the epigraph of f :

epi(f) = {(y, t) ∈ C × R : t ≥ f(y)}.
Since H(x) has a nonempty interior, it can be shown there exists x∗ ∈ X∗ such
that (x∗,−1) ∈ X∗ × R separates H(x) and epi(f). This implies that x∗ ∈ ∂f(x)
and ‖x∗‖ ≤ K. �

By definition, for every point in the domain of a locally Lipschitz continuous
function, there exists a neighborhood on which the function is Lipschitz continuous.
Therefore, the following lemma allows the preceding result to be applied to locally
Lipschitz functions. We omit the straightforward proof.

Lemma 2.6. Suppose C is a convex subset of a Banach space X, and fix any x ∈ C
and ε > 0. Then, ∂f(y) = ∂f |Bε(x)∩C(y) for all y ∈ Bε(x) ∩ C.

Suppose X, C, and f satisfy (i)-(iii) in Theorem 1.2. Note that for any x, y ∈ C,
we have span(C − x) = span(C − y). In addition, since aff(C) is dense in X, it
follows that span(C − y) = aff(C) − y is also dense in X. Since any subset of a
separable Banach space is separable, span(C − y) is separable for any y ∈ C. Let
{xn} ⊂ span(C − y) be a sequence which is dense in span(C − y) and hence also
dense in X. For each K,m, n ∈ N, let AK,m,n denote the set of all x ∈ C for which
there exist x∗, y∗ ∈ ∂f(x) such that

‖x∗‖, ‖y∗‖ ≤ K and 〈xn, x∗ − y∗〉 ≥ 1
m .

The following lemmas establish the key properties of AK,m,n that will be needed
for our proof of Theorem 2.4.

Lemma 2.7. Suppose X, C, and f satisfy (i)-(iii) in Theorem 1.2. Then, the set
of x ∈ C for which ∂f(x) is a singleton is

⋂
K,m,n(C \AK,m,n).

Proof. Clearly, if ∂f(x) is a singleton, then x ∈
⋂
K,m,n(C \AK,m,n). To prove the

converse, we will show that if ∂f(x) is not a singleton for x ∈ C, then x ∈ AK,m,n
for some K,m, n ∈ N. We first show that ∂f(x) 6= ∅ for all x ∈ C. To see this, fix
any x ∈ C. Since f is locally Lipschitz continuous, there exists ε > 0 such that f is
Lipschitz continuous on Bε(x) ∩ C. Therefore, by Lemma 2.5, ∂f |Bε(x)∩C(x) 6= ∅.
By Lemma 2.6, this implies that ∂f(x) 6= ∅.

Suppose ∂f(x) is not a singleton. Since ∂f(x) is nonempty, there exist x∗, y∗ ∈
∂f(x) such that x∗ 6= y∗. Hence, there exists y ∈ X such that 〈y, x∗ − y∗〉 > 0.
Since {xn} is dense in X, by the continuity of x∗− y∗, there exists n ∈ N such that
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〈xn, x∗−y∗〉 > 0. Thus, there exists m ∈ N such that 〈xn, x∗−y∗〉 ≥ 1
m . Therefore,

taking K ∈ N such that ‖x∗‖, ‖y∗‖ ≤ K, we have x ∈ AK,m,n. �

Lemma 2.8. Suppose X, C, and f satisfy (i)-(iii) in Theorem 1.2. Then, AK,m,n
is a closed subset of C (in the relative topology) for any K,m, n ∈ N.

Proof. Consider any sequence {zk} ⊂ AK,m,n such that zk → z for some z ∈ C.
We will show that z ∈ AK,m,n. For each k, choose x∗k, y

∗
k ∈ ∂f(zk) such that

‖x∗k‖, ‖y∗k‖ ≤ K and 〈xn, x∗k − y∗k〉 ≥ 1
m . Since {x∗ ∈ X∗ : ‖x∗‖ ≤ K} is weak*

compact by Alaoglu’s theorem and weak* metrizable by the separability of X, any
sequence in this ball has a weak*-convergent subsequence. Thus, without loss of
generality, we can assume there exist x∗, y∗ ∈ X∗ with ‖x∗‖, ‖y∗‖ ≤ K such that

x∗k
w∗

−−→ x∗ and y∗k
w∗

−−→ y∗. Hence, by the norm-boundedness of the sequence {x∗k},
the definition of the subdifferential, and the continuity of f , for any y ∈ C,

〈y − z, x∗〉 = lim
k
〈y − zk, x∗k〉 ≤ lim

k

[
f(y)− f(zk)

]
= f(y)− f(z),

which implies x∗ ∈ ∂f(z).3 A similar argument shows y∗ ∈ ∂f(z). Finally, since

〈xn, x∗ − y∗〉 = lim
k
〈xn, x∗k − y∗k〉 ≥ 1

m ,

we have z ∈ AK,m,n, and hence AK,m,n is relatively closed. �

Lemma 2.9. Suppose X, C, and f satisfy (i)-(iii) in Theorem 1.2. Then, C \
AK,m,n is dense in C for any K,m, n ∈ N.

Proof. Since C is convex, it is straightforward to show that

(2.1) aff(C) = {λx+ (1− λ)y : x, y ∈ C and λ ∈ R}.
Consider arbitrary K,m, n ∈ N and z ∈ C. We will find a sequence {zk} ⊂
C \AK,m,n such that zk → z. Recall that xn ∈ span(C−y) for any choice of y ∈ C.
Thus, z+xn ∈ z+ span(C− z) = aff(C), so by Equation (2.1), there exist x, y ∈ C
and λ ∈ R such that λx + (1 − λ)y = z + xn. Let us first suppose λ > 1; we will
consider the other cases shortly. Note that λ > 1 implies 0 < λ−1

λ < 1. Consider
any sequence {ak} ⊂ (0, λ−1

λ ) such that ak → 0. Define a sequence {yk} ⊂ C
by yk = aky + (1 − ak)z, and note that yk → z. We claim that for each k ∈ N,
yk + ak

λ−1xn ∈ C. To see this, note the following:

yk + ak

λ−1xn = aky + (1− ak)z + ak

λ−1

(
λx+ (1− λ)y − z

)
=
(
1− akλ

λ−1

)
z + akλ

λ−1x.

Since 0 < ak < λ−1
λ , we have 0 < akλ

λ−1 < 1. Thus, yk + ak

λ−1xn is a convex
combination of z and x, so it is an element of C. This is illustrated in Figure 1.

Consider any k ∈ N. Because C is convex, we have yk + txn ∈ C for all t ∈
(0, ak

λ−1 ). Define a function g : (0, ak

λ−1 ) → R by g(t) = f(yk + txn), and note that
g is convex. It is a standard result that a convex function on an open interval

3The first equality follows from a standard result: Let K ≥ 0 and let {zk} ⊂ X and {z∗k} ⊂ X∗

be sequences such that (i) ‖z∗k‖ ≤ K for all k, and (ii) zk → z and z∗k
w∗
−−→ z∗ for some z ∈ X and

z∗ ∈ X∗. Then,

|〈zk, z∗k〉 − 〈z, z∗〉| ≤ |〈zk − z, z∗k〉|+ |〈z, z∗k − z∗〉| ≤ ‖zk − z‖‖z∗k‖+ |〈z, z∗k − z∗〉|
≤ ‖zk − z‖K + |〈z, z∗k − z∗〉| → 0,

so 〈zk, z∗k〉 → 〈z, z∗〉.
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yk + ak

λ−1xnyk

z

y

z + xn

zk

x

Figure 1. Construction of the sequence {zk}

in R is differentiable for all but (at most) countably many points of this interval
(see [11, Theorem 1.16]). Let tk ∈ (0, ak

λ−1 ) be such that g′(tk) exists, and let
zk = yk + tkxn. If x∗ ∈ ∂f(zk), then it is straightforward to verify that the linear
mapping t 7→ t〈xn, x∗〉 is in the subdifferential of g at tk. Since g is differentiable
at tk, it can only have one element in its subdifferential at that point. Therefore,
for any x∗, y∗ ∈ ∂f(zk), we have 〈xn, x∗〉 = 〈xn, y∗〉; hence, zk ∈ C \ AK,m,n.
Finally, note that since 0 < tk <

ak

λ−1 and ak → 0, we have tk → 0. Therefore,
zk = yk + tkxn → z.

Above, we did restrict attention to the case of λ > 1. However, if λ < 0, then let
λ′ = 1− λ > 1, x′ = y, y′ = x, and the analysis is the same as above. If λ ∈ [0, 1],
then note that z + xn ∈ C. Similar to the preceding paragraph, for any k ∈ N,
define a function g : (0, 1

k )→ R by g(t) = f(z + txn). Let tk ∈ (0, 1
k ) be such that

g′(tk) exists, and let zk = z+tkxn. Then, as argued above, we have zk ∈ C \AK,m,n
for all k ∈ N and zk → z. �

Proof of Theorem 2.4. By Lemma 2.7, the set of x ∈ C for which ∂f(x) is a sin-
gleton is

⋂
K,m,n(C \ AK,m,n). By Lemmas 2.8 and 2.9, for each K,m, n ∈ N,

C \ AK,m,n is open (in the relative topology) and dense in C. Since C is a Baire
space, every countable intersection of open dense subsets of C is also dense. This
completes the proof. �

Lemma 2.10 summarizes certain properties of f∗ that are useful in establishing
the variation of the Fenchel-Moreau duality stated in Lemma 1.1. The proof of
Lemma 2.10 is standard (see, e.g., [3]); it is therefore omitted.

Lemma 2.10. Suppose C ⊂ X and f : C → R. Then,

(1) f∗ is lower semi-continuous in the weak* topology.
(2) f(x) ≥ 〈x, x∗〉 − f∗(x∗) for all x ∈ C and x∗ ∈ X∗.
(3) f(x) = 〈x, x∗〉 − f∗(x∗) if and only if x∗ ∈ ∂f(x).

We now prove the results stated in the Introduction.

Proof of Lemma 1.1. For any x ∈ C, there exists ε > 0 such that f is Lipschitz
continuous on Bε(x) ∩ C. By Lemma 2.5, ∂f |Bε(x)∩C(x) 6= ∅. By Lemma 2.6,
this implies that ∂f(x) 6= ∅. Therefore, parts (2) and (3) in Lemma 2.10 imply
Equation (1.1) for all x ∈ C. �
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Proof of Theorem 1.2. (1 ⇒ 2): Let x ∈ C be arbitrary. By Theorem 2.4, Cf is
dense in C, so there exists a sequence {xk} ⊂ Cf such that xk → x.4 Since f is
locally Lipschitz continuous, there exists ε > 0 such that f is Lipschitz continuous
on Bε(x) ∩ C. Let K ≥ 0 be a Lipschitz constant of f |Bε(x)∩C . Without loss of
generality assume that xk ∈ Bε(x) for all k.

For each k, by Lemma 2.5, there exists x∗k ∈ ∂f |Bε(x)∩C(xk) such that ‖x∗k‖ ≤ K.
By Lemma 2.6, x∗k ∈ ∂f |Bε(x)∩C(xk) = ∂f(xk). Therefore, {x∗k} ⊂ Mf ∩ {x∗ ∈
X∗ : ‖x∗‖ ≤ K}, where the intersection is weak* compact and weak* metrizable
since Mf is weak* closed, {x∗ ∈ X∗ : ‖x∗‖ ≤ K} is weak* compact by Alaoglu’s
theorem, and X is separable. Thus, {x∗k} has a convergent subsequence. Without

loss of generality, suppose the sequence itself converges, so that x∗k
w∗

−−→ x∗ for some
x∗ ∈ Mf . By the norm-boundedness of the sequence {x∗k}, the definition of the
subdifferential, and the continuity of f , for any y ∈ C,

〈y − x, x∗〉 = lim
k
〈y − xk, x∗k〉 ≤ lim

k

[
f(y)− f(xk)

]
= f(y)− f(x),

which implies x∗ ∈ ∂f(x). Since x ∈ C was arbitrary, we conclude that for all
x ∈ C, there exists x∗ ∈ Mf ⊂ M such that x∗ ∈ ∂f(x). Then, by (2) and (3) in
Lemma 2.10, we conclude that for all x ∈ C,

f(x) = max
x∗∈M

[
〈x, x∗〉 − f∗(x∗)

]
.

(2 ⇒ 1): Fix any x ∈ Cf . Since the maximization in part 2 is assumed to have
a solution, there exists x∗ ∈ M such that f(x) = 〈x, x∗〉 − f∗(x∗), which implies
x∗ ∈ ∂f(x) by (3) in Lemma 2.10. However, x ∈ Cf implies ∂f(x) = {x∗}, and
hence ∂f(x) ⊂ M. Since x ∈ Cf was arbitrary, we have Nf ⊂ M. Because M is
weak* closed, we have Mf = Nf ⊂M. �

3. Examples

Let X = l1, so X∗ = l∞. Let C = {x ∈ l1 : −1/i3 ≤ xi ≤ 1/i3}. It is standard
to verify that l1 and C satisfy the assumptions of Theorem 1.2, but the interior of
C is empty. Define the ith unit vector ei ∈ l1 by eii = 1 and eij = 0 for all j 6= i.

We first give an example of a continuous linear function f : C → R such that
∂f(x) is not a singleton for any x ∈ C. By Theorem 2.4, this function f cannot
be locally Lipschitz continuous. In particular, Example 3.1 shows that the local
Lipschitz continuity assumption cannot be dropped from Theorems 1.2 and 2.4.

Example 3.1. Let f : C → R be defined by f(x) =
∑∞
i=1 ixi. This is well-defined

since for any x ∈ C,
∑
i |ixi| is a series with positive terms that is bounded above

by the convergent series
∑
i 1/i2. We first show that f is continuous on C. Note

that for any I ∈ N and x, y ∈ C,

|f(x)− f(y)| ≤
∑
i≤I

|ixi − iyi|+
∑
i>I

|ixi − iyi|

≤
∑
i≤I

I|xi − yi|+
∑
i>I

2/i2 < I‖x− y‖1 + 2/I,

4If C were also assumed to be open, then one could apply Mazur’s theorem here instead of
Theorem 2.4. However, in a number of applications, such as [4, 5, 6], the domain C has an empty

interior, yet it satisfies the assumptions of our Theorem 2.4.
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since
∑
i>I 1/i2 < 1/I. For any ε > 0, there is I ∈ N such that 2/I < ε. From

above, for any x, y ∈ C satisfying ‖x−y‖1 < (1/I)(ε−2/I), we have |f(x)−f(y)| <
ε. Therefore, f is continuous on C.

We now show that ∂f(x) is not a singleton for any x ∈ C. Suppose to the
contrary that ∂f(x) = {x∗} for some x∗ ∈ l∞. First, consider the case where
xi > −1/i3 for all i ∈ N. For all i ∈ N, there exists λ > 0 such that x − λei ∈ C.
Then, −λi = f(x − λei) − f(x) ≥ 〈−λei, x∗〉 = −λx∗i , implying x∗i ≥ i. Since the
latter holds for all i ∈ N, this contradicts x∗ ∈ l∞.

Next, consider the case where x = −1/i3 for some i. Define y∗ = x∗ − ei ∈ l∞
and take any y ∈ C. Note that 〈y − x, ei〉 = yi + 1/i3 ≥ 0. Therefore, since
x∗ ∈ ∂f(x), we have

f(y)− f(x) ≥ 〈y − x, x∗〉 ≥ 〈y − x, x∗〉 − 〈y − x, ei〉 = 〈y − x, y∗〉.
Since the above equation holds for all y ∈ C, we have y∗ ∈ ∂f(x). Since y∗ 6= x∗,
this contradicts ∂f(x) = {x∗}.

To directly see that f is not Lipschitz continuous, fix any i ∈ N, and take λ > 0
such that λei ∈ C. Then, we have f(λei) − f(0) = iλ = i‖λei − 0‖1. Therefore,
f is not Lipschitz continuous. It is easy to see that local Lipschitz continuity and
Lipschitz continuity are equivalent for a linear function on a convex subset of a
normed linear space. Therefore, f is also not locally Lipschitz continuous.

We next give an example illustrating that if in part (2) of Theorem 1.2 we
drop the assumption that the maximization problem has a solution and replace the
maximum operator with the supremum operator, then (2) does not imply (1).

Example 3.2. Define f : C → R by f(x) = 0 for all x ∈ C. Clearly, X, C,
and f satisfy (i)–(iii) in Theorem 1.2. By Theorem 2.4, the set of points x ∈ C
where ∂f(x) is a singleton is a dense subset of C. In fact, it is easy to verify that
Cf = {x ∈ l1 : −1/i3 < xi < 1/i3} and Nf =Mf = {0}.

For each i ∈ N, define x∗i = i2ei and letM = {x∗i : i ∈ N}. Then, for 1 < α < 2
and x = (i−α) ∈ l1 \C, 〈x, x∗i〉 = i2−α →∞. This implies thatM is weak* closed.
Note also that

f∗(x∗i) = sup
x∈C

[
〈x, x∗i〉 − f(x)

]
=

1
i

since the supremum is attained at x = 1
i3 e

i. Then, for all x ∈ C,

f(x) = 0 = sup
i∈N

[
i2xi −

1
i

]
= sup
x∗∈M

[
〈x, x∗〉 − f∗(x)

]
since (i2xi − 1/i)↗ 0. However, Mf = {0} is not a subset of M.

If a function is convex and continuous on an open and convex domain, then
Phelps [11] shows that Gâteaux differentiability is equivalent to having a singleton
subdifferential. We next give an example of a function f : C → R such that X, C,
and f satisfy (i)–(iii) in Theorem 1.2 such that f is not Gâteaux differentiable at
any x ∈ C.

Example 3.3. Again, let f(x) = 0 for all x ∈ C. As noted in Example 3.2,
Cf = {x ∈ l1 : −1/i3 < xi < 1/i3} and Nf =Mf = {0}. Now, let y = (1/i2) ∈ l1.
Then, for any x ∈ C and λ > 0, taking i > 2/λ gives λyi = λ/i2 > 2/i3. This
implies that xi + λyi > −1/i3 + 2/i3 = 1/i3. Thus, x + λy /∈ C for any λ > 0.
Therefore, f cannot be Gâteaux differentiable at x.
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