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Abstract

Liver exchange has been practiced in small numbers, mainly to overcome blood-type incompat-

ibility between patients and their living donors. A donor can donate either his smaller left lobe

or the larger right lobe, although the former option is safer. Despite its elevated risk, right-

lobe transplantation is often utilized due to size-compatibility requirement with the patient.

We model liver exchange as a market-design problem, focusing on logistically simpler two-way

exchanges, and introduce an individually rational, Pareto-efficient, and incentive-compatible

mechanism. Construction of this mechanism requires novel technical tools regarding bilateral

exchanges under partial-order-induced preferences. Through simulations we show that not

only can liver exchange increase the number of transplants by more than 30%, it can also

increase the share of the safer left-lobe transplants.
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1 Introduction

Following the kidney, the liver is the second most common organ for transplantation

worldwide. In 2018 there were 12,720 new additions in the US to waitlists for liver transplants.
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Sachs Faculty Research Fund. Sönmez and Ünver acknowledge the research support of the NSF via award

SES #1729778. We thank five anonymous referees of the journal, the participants at MATCH-UP at As-

cona - Switzerland, Stanford, Conference in Honor of John Weymark at Vanderbilt, Princeton, INFORMS

at Phoenix, Zurich, Arne Ryde Conference at Lund University - Sweden, Shanghai UFE Theory Conference,

UT Sydney Market Design Conference, SSCW at Seoul, Melbourne, Deakin, Adelaide, Vanderbilt Market

Design Conference, NBER Market Design Working Group Meeting, Matching in Practice Workshop at Bu-

dapest, Harvard/MIT, SAET at Faro - Portugal, Conference on Economic Design at University of York -

UK, Southern Methodist, Penn State, Montreal-CIREQ Advances in Micro Theory Workshop, Advances in

Mechanism-Market Design Conference at NYU-Abu Dhabi, and Tsukuba University Global Science Week -

Japan.
†Department of Economics, University of California at Berkeley; hie@berkeley.edu
‡Department of Economics, Boston College; sonmezt@bc.edu
§Department of Economics, Boston College; unver@bc.edu

1



While 8,250 patients were removed from waitlists due to receiving liver transplants, 1,159

of them were removed due to death, and 1,315 were removed due to being too sick for

a transplant. Transplantation is the only potential treatment for end-stage liver disease,

unlike end-stage kidney disease where there is the alternative (although inferior) treatment

of dialysis. As in the case of kidneys, transplants from deceased donors and living donors

are both possible (and widespread) for liver transplantation.1 Unlike kidney transplantation,

however, a living donor can donate only a part of his liver —henceforth referred to as a

lobe— going through a liver resection operation called hepatectomy . Based on the anatomy

of the liver, the main options are donating either the smaller left lobe (normally 30–40%

of the liver) with a left hepatectomy or the larger right lobe (normally 60–70% of the liver)

with a right hepatectomy . Following the transplantation, the remnant liver of a living donor

typically regenerates within a month. Assuming the donor and the patient are blood-type

compatible,2 which of these two options is preferred (or even feasible) depends on the relative

liver volumes of the patient and the donor. In order to provide adequate liver function for the

patient, at least 40% of the standard liver volume of the patient is required. The metabolic

demands of a larger patient will not be met by the smaller left lobe from a relatively small

donor. This phenomenon is known as small-for-size syndrome. The primary solution to

avoid this syndrome has been harvesting the larger right lobe of the liver for transplantation.

This procedure, however, involves considerably higher risks for the donor than harvesting

the smaller left lobe. While donor mortality is approximately 0.1% for left hepatectomy, it

is in the range of 0.4–0.5% for right hepatectomy (Lee, 2010). Furthermore, other significant

risks, referred to as donor morbidity , are also much higher under right hepatectomy than

left hepatectomy.3 Mishra et al. (2018) reports that the morbidity rates are 28% for right

hepatectomy and 7.5% for left hepatectomy. Hence one of the main challenges for living-

donor liver transplantation is that, the much safer left-lobe transplantation is not a viable

option for a majority of patients with willing donors. As an implication, many patients with

potential donors cannot receive a transplant since either their donors hesitate to go through

the higher-risk right hepatectomy, or their doctors recommend against this procedure.

The high risks associated with the right-lobe liver transplantation also affect the public

perception of living-donor liver transplantation. The number of annual living-donor liver

1The attitude towards living-donor liver transplantation differs considerably between western countries
and Asian countries. In contrast to western countries, donations for liver transplantation in much of Asia
come from living donors. For example, in 2018, while only 401 of 8,250 liver transplants were from living
donors in the US, 1,106 of 1,475 liver transplants in South Korea and 1,150 of 1,588 liver transplants in
Turkey were from living donors.

2Each individual is of one of the following four blood types: O, A, B, or AB. While a blood-type O donor
is blood-type compatible with any blood-type patient, a blood-type A donor is blood-type compatible with
patients of blood types A and AB, a blood-type B donor is blood-type compatible with patients of blood
types B and AB, and a blood-type AB donor is blood-type compatible with only patients of blood type AB.

3Donor morbidity is the medical term for donor complications following the transplantation surgery, and
it includes bile leaks, surgery related infectious and gastrointestinal diseases, liver necrosis, wound complica-
tions, cardiovascular complications, and being hemorrhagic among others.
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transplants in the US peaked in 2001 with 524 transplants, increasing eight-fold in the period

from 1996 to 2001. The highly publicized death of a right-lobe liver donor in the US in 2002

brought an end to this remarkable increase, and resulted in a 40–50% reduction from its peak

over the next decade.4 The number of annual living-donor liver transplants in the US have

been mostly increasing again since 2012, with 401 transplants in 2018.

As the worldwide shortage of transplant organs keeps increasing annually, living-donor

exchanges emerged as an important source for these potentially life-saving resources, espe-

cially in the case of kidneys. In its most basic form, a living-donor organ exchange involves

two patients with willing donors who exchange donors either because direct donation is not

an option due to an immunological barrier, or because one or both patients receive a more

favorable outcome through the exchange. The concept was originally proposed for kidneys

by Rapaport (1986), and it became widespread over the last 15 years with the introduction of

optimization and market-design techniques to kidney exchange (Roth, Sönmez, and Ünver,

2004, 2005, 2007). A vast majority of these exchanges are conducted between incompati-

ble kidney patient-donor pairs, where a donor cannot directly donate to his patient due to

immunological barriers.5 Liver exchanges between incompatible patient-donor pairs are also

conducted in modest numbers in several Asian countries, most notably in South Korea. Our

focus in this paper is the design of a liver-exchange mechanism that not only includes incom-

patible pairs, but also a subset of compatible pairs, such as those whose only direct-donation

possibility to their patients is through a much higher-donor-risk right hepatectomy. Under an

efficient and incentive-compatible mechanism we introduce, compatible pairs participate in

exchange only if they strictly benefit by doing so, most notably by reducing the risks to their

donors through a left hepatectomy. As such, our proposed mechanism not only increases

the number of living-donor liver transplants, but also increases the reliance on the lower-risk

left-lobe liver transplantation in the spirit of the central tenet of the hippocratic oath “first

do no harm.”

While the practice of kidney exchange has flourished worldwide over the last fifteen years,

inclusion of compatible pairs in exchange pools has proved to be a challenge since benefits to

these pairs from joining kidney-exchange pools are either not present or weak. In contrast,

the benefits from joining liver-exchange pools can be considerable for a significant fraction

of compatible pairs, if it means their donors can have a left hepatectomy rather than a

right hepatectomy. And the welfare gains from their inclusion can be potentially very high.

Consider a large, blood-type A liver patient, who in the absence of exchange has to receive

a right liver lobe from his small, blood-type O donor. While this is a feasible medical

procedure, an alternative arrangement of an exchange of donors with a small, blood-type

O patient with a large, blood-type A donor will not only significantly reduce the risks to

4See Grady (2002).
5For the case of kidney transplantation, these immunological barriers are blood-type incompatibility and

tissue-type incompatibility.
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his donor (by replacing the donor’s right hepatectomy with a left hepatectomy), but also

enable a second patient to receive a potentially life-saving liver transplant. The possibility

of offering a less risky procedure to such pairs provides an opportunity to increase the size

of the liver-exchange pool in a way that includes the much-needed blood-type O donors.

In the above example, the large, blood-type A patient with a small, blood-type O donor

would likely be motivated to participate in exchange, if the pair benefits from exchange by

reducing the donor risk through a much safer procedure of left hepatectomy. However, not

all cases are this straightforward. Consider a blood-type A patient with a blood-type B

donor. Since this pair is blood-type incompatible to start with, not only can it benefit from

exchange through a left-lobe donation, but also through the less-desired right-lobe donation

if the pair is willing to expose the donor to the higher mortality and morbidity risks of a right

hepatectomy. This possibility is the primary reason why one cannot adopt the mechanisms

and techniques developed for kidney exchange directly to liver exchange, unless the higher-

donor-risk right hepatectomy is completely ruled out. A liver-exchange mechanism has to

determine not only which pairs are to be matched with each other to exchange donors, but

it shall also determine which donors have to donate their right lobes rather than their left

lobes. Of course, some pairs may not be willing to expose their donors to the more risky

procedure of right hepatectomy, but a poorly designed exchange mechanism may also give

them incentives to hide their willingness to do so even if they are. As such, our focus is not

only the design of an efficient mechanism, but at the same time the design of an incentive-

compatible liver exchange mechanism where a pair never receives a less favorable outcome

by either revealing its willingness to go through the less desired right hepatectomy or by

revealing whether it has a direct-transplant bias or not.

The key pairs in the design of an efficient and incentive-compatible mechanism are those

who can participate in exchange both through a left-lobe donation as well as through a less-

preferred right-lobe donation.6 The challenge is determining when the donors of a particular

pair shall be considered for a right-lobe donation rather than a left-lobe donation. We

refer to this process as a transformation. To assure incentive compatibility, a pair should

be transformed only after their left-lobe-exchange possibilities are exhausted, so that their

announcement of whether they are willing for their donors to go through a right hepatectomy

does not affect whether or not their donors go through the safer left hepatectomy. One simple

approach might be first considering all such pairs for left-lobe donation, and then transforming

them simultaneously once their left-lobe-donation possibilities are exhausted. There are two

difficulties with this simple approach. First, it is possible that an exchange between two such

pairs might be possible with the transformation of only one of these pairs, say pair 1. If

so, transforming both pairs and matching them for an exchange results in a Pareto-inferior

outcome. Second, this possibility might encourage pair 1 to hide its willingness for a right-

lobe donation. Hence, key in our design is determining the order in which pairs are to be

6Throughout the paper, Pareto efficiency is intended by the term efficiency.
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transformed. We show that there is a well-defined ordering, which assures that the resulting

mechanism is not only Pareto efficient, but also incentive compatible. We also illustrate

the potential gains from adopting our proposed mechanism on simulated pools based on

South Korean population and transplantation characteristics. We show that, through liver

exchange, the number of living-donor liver transplants can be increased by more than 30%.

1.1 Double Equipoise and Vancouver Forum

From an ethical perspective, the concept of double equipoise was proposed by Cronin et al.

(2001) to balance the risk of a healthy donor versus the benefit for a high-risk recipient. A

well-designed liver exchange system can not only be an effective tool to achieve this balance,

but it also complies with the mainstream approach towards living-donor liver transplantation,

summarized in the Report of the Vancouver Forum (Barr et al., 2006). Two of the main

principles of live liver donation, both related to the concept of double equipoise, are stated

as follows in this reference document:

Live liver donation should only be performed if the risk to the donor is justified

by the expectation of an acceptable outcome in the recipient . . .

The estimated risk of mortality and morbidity currently associated with live donor

right hepatectomy is 0.4% and 35% respectively. Since the risk to the donor is

considerable, programs performing live donor liver transplantation should insti-

tute procedures and protocols that insure that donor mortality and morbidity is

minimized.

Hence, a possible establishment of a liver exchange program is very much in the spirit of

the principles outlined by the Vancouver Forum, especially if it gives priority to left-lobe

donation.

In part motivated by the theory of double equipoise, there has been some renewed interest

in the liver transplantation community in finding ways to replace higher-donor-risk right

hepatectomy with left hepatectomy. Suggesting that

1. donor complications are not only 4- to 12-fold lower for left-lobe donors than right-lobe

donors, but also

2. complications are less severe under left-lobe donation than under right-lobe donation,

Roll et al. (2013) propose shifting the risk from the donor to the patient by lowering the

minimum acceptable liver tissue volume to a less conservative level. They state:

Although using smaller grafts from LL [left lobe] may decrease recipient benefit

absolutely, their double-equipoise analysis suggests that LL [left lobe] is more

efficient than RL [right lobe] in converting donor risk into recipient benefit.
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Establishment of a liver exchange program and adoption of our mechanism can be seen as part

of these efforts to reduce donor-risk through increased use of left hepatectomy. In contrast

to Roll et al. (2013) proposal where the increased utilization of left hepatectomy comes at

the expense of an increased average risk to patients, under our proposed liver exchange

mechanism it is achieved more naturally without any adverse effect.

Finally, there is one additional benefit of liver exchange, reported in Pomfret et al. (2011).

There can be situations where a direct liver transplant from a donor to his patient is ethically

unacceptable based on the theory of double-equipoise, for example due to old age of the

patient that translates to low patient benefit, but an exchange involving the same patient-

donor pair may be ethically acceptable due to the additional benefit to the other patient.

1.2 Other Related Literature

Kidney exchange, as an application of market design, was initiated by Roth, Sönmez,

and Ünver (2004, 2005, 2007). Recent developments in market design for kidney exchanges

include studies on incentivizing compatible pairs to participate in exchange (Nicolò and

Rodriguez-Álvarez, 2017; Sönmez, Ünver, and Yenmez, 2018), using kidney exchange along

with ABO-blood-type-incompatible kidney transplants (Andersson and Kratz, 2019) or the

use of immunosuppressants (Chun et al., 2017), and designing an incentive-compatible par-

ticipation scheme for transplant centers in kidney exchange (Agarwal et al., 2019).

Unlike the growing literature on kidney exchange, there are only a handful papers on

liver exchange. These include Hwang et al. (2010) and Chan et al. (2010), both of which

demonstrate the proof of concept for liver exchange, and Mishra et al. (2018), which advocates

for organized liver exchange in the US. Dickerson and Sandholm (2014) advocates for trans-

organ exchange, where a donor associated with a kidney recipient donates a liver lobe and

a donor associated with a liver recipient donates a kidney, whereas Samstein et al. (2018)

explores some of the ethical concerns this practice might encounter, including unbalanced

donor risks. Ergin, Sönmez, and Ünver (2017) studies dual-donor organ exchange, where each

patient receives organs from two living donors. Dual-graft liver exchange, where each patient

participates in exchange with two left-lobe donating donors, is an application of this model.

Although dual-graft liver transplantation is practiced in a few countries, including South

Korea and China, overcoming size incompatibility through a right-lobe transplantation is far

more common throughout the world. And while the difference between the mortality and

morbidity risks of right lobe vs. left-lobe donation is well established in the transplantation

literature, our main focus, the design implications of these two main liver transplantation

technologies, is not considered in any of the papers on liver exchange.

In terms of modeling, there is a conceptual similarity between our liver-exchange model

and the “matching with contracts” model of Hatfield and Milgrom (2005), which extends

two-sided matching problems (Gale and Shapley, 1962) by allowing various contractual ar-
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rangements between the two sides. While left-lobe donation and right-lobe donation can be

interpreted as two different contractual arrangements, unlike the matching with contracts

model, our model is one sided. Hence the cumulative offer mechanisms introduced for the

matching with contracts model by Hatfield and Milgrom (2005) and extended by Hatfield

and Kojima (2010) is not applicable in our framework.

More broadly, our paper contributes to a very diverse list of market-design applications,

including entry-level labor markets (Roth and Peranson, 1999), spectrum auctions (Milgrom,

2000), internet auctions (Edelman, Ostrovsky, and Schwarz, 2007; Varian, 2007), school

choice (Abdulkadiroğlu and Sönmez, 2003), course allocation (Sönmez and Ünver, 2010; Bud-

ish and Cantillon, 2012), affirmative action (Kojima, 2012; Hafalir, Yenmez, and Yildirim,

2013; Echenique and Yenmez, 2015), refugee matching (Moraga and Rapoport, 2014; Jones

and Teytelboym, 2017; Delacrétaz, Kominers, and Teytelboym, 2017), and assignment of

airport landing slots (Schummer and Vohra, 2013; Schummer and Abizada, 2017).

2 A Model of Dual Technology Liver Transplantation

There are two liver transplantation technologies: A donor can donate either his left liver

lobe or his right liver lobe for a transplant, although the latter involves considerably higher

risk to the donor. We sometimes refer to a liver lobe as a graft, when it is donated for a

transplant.

2.1 Size Compatibility

The volume of the left liver is generally between 30% to 40% of the liver volume, and the

right lobe makes up the rest. Formally, the size of a liver lobe (or a graft) is the volume

of the liver lobe.

A patient typically requires a liver graft with a volume of at least 40% of her own liver

volume, although for some patients this minimum requirement may differ depending on the

details of the patient’s disease. Formally, the size of a patient is the minimum required

volume of the liver graft he needs for a transplant. Therefore, a liver lobe is size compatible

with a patient if and only if it is as large as the size of the patient.

Let S = {0, 1, . . . , S − 1} denote the set of possible sizes, where S ≥ 1 is the number of

possible sizes. Here the larger numbers correspond to larger sizes.7

2.2 Blood-type Compatibility

The blood type of an individual is determined by the availability or the lack of two antigens

referred to as antigen A and antigen B. An individual of blood type O has neither antigen,

7Set S can be specific to each liver-exchange pool, allowing for a continuum possibility for sizes generically
as long as (1) each pool we analyze is finite and (2) corresponding sizes in a pool–represented by integers–are
ordinal.
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an individual of blood type A has only antigen A, an individual of blood type B has only

antigen B, and an individual of blood type AB has both antigens. A donor (and each of his

liver lobes) are blood-type compatible with a patient if he does not have a blood antigen

the patient lacks. That means a blood-type O donor (having neither antigen) is blood-type

compatible with patients of all blood types, a blood-type A donor is blood-type compatible

with patients of blood types A and AB, a blood-type B donor is blood-type compatible with

patients of blood types B and AB, and a blood type AB donor is blood-type compatible with

patients of only blood type AB. Let B = {O,A,B,AB} denote the set of blood types.

2.3 Liver Donation Relation

The blood type and the size of each patient are assumed to be observable physical at-

tributes. Similarly, the blood type and the size of each liver lobe (i.e. graft) are also assumed

to be observable. The set of patient types, and the set of liver lobe (or equivalently graft)

types are both referred to as T ≡ B×S. Observe that, the type of a liver lobe only specifies

its blood type and size, and not whether it is the left lobe or the right lobe.

Consider a donor who wants to donate a liver lobe to a patient. He can do so if and only

if he is blood-type compatible and the intended lobe is size compatible with the patient.

We define a liver donation partial order on T to denote for any X,X ′ ∈ T, graft of

type X can be feasibly donated to patient of type X ′ if and only if type X is both blood-

type compatible and size compatible with type X ′. To do that, we present an equivalent

representation for B. We redefine the set of blood types as

B ≡ {0, 1}2,

where for any blood type b = (b1, b2) ∈ B, b1 = 0 refers to the existence of A blood antigen

and b1 = 1 refers to its non-existence, and b2 = 0 refers to the existence of B blood antigen

and b2 = 1 refers to its non-existence. Thus,

(0, 0) ≡ AB, (0, 1) ≡ A, (1, 0) ≡ B, and (1, 1) ≡ O

denote the four blood types, and a graft of blood type b ∈ B is blood-type compatible with a

patient of blood type b′ ∈ B if and only if b ≥ b′. Hence, T = B×S = {0, 1}2×{0, 1, . . . , S−
1}.

A patient/liver lobe type X = (X1, X2, X3) ∈ T consists of its blood type (X1, X2) ∈ B

and its size X3 ∈ S.

We define the liver donation partial order ≥ as the standard coordinate-wise compari-

son partial order over T, and (T,≥) as its associated partially ordered set: for any X,X ′ ∈ T,

a graft of type X = (X1, X2, X3) is compatible with a patient of type X ′ = (X ′1, X
′
2, X

′
3)
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if (X1, X2, X3) ≥ (X ′1, X
′
2, X

′
3).

8 A graft can be transplanted to a patient if and only if it is

compatible with the patient.

The set of types T represents both the set of patient types and the set of liver lobe types.

The description of a donor, on the other hand, includes the sizes of both his liver lobes.

Hence, the set of donor types is represented by

TD ≡ B× S2 = {0, 1}2 × {0, 1, . . . , S − 1}2

where, for any donor type Y = (Y1, Y2, Y3`, Y3r) ∈ TD,

1. the left-lobe size is given by Y3`,

2. the right-lobe size is given by Y3r, and

3. {
Y3` < Y3r if Y3` < S − 1

Y3` = Y3r if Y3` = S − 1

}
.

Given a donor of type Y = (Y1, Y2, Y3`, Y3r) ∈ TD,

• Y ` ≡ (Y1, Y2, Y3`) ∈ T denotes the type of his left liver lobe, and

• Y r ≡ (Y1, Y2, Y3r) ∈ T denotes the type of his right liver lobe.

Given the human anatomy, the right liver lobe is always larger than the left liver lobe.9

Therefore, for any pair X, Y ∈ T×TD, a patient of type X can receive a transplant from a

donor of type Y

• through a left-lobe donation (i.e. left hepatectomy) if X ≤ Y `, and

• through a right-lobe donation (i.e. right hepatectomy) if X ≤ Y r.

Observe that these vector inequalities are equivalent to the donor being blood-type compat-

ible with and his liver lobe for transplantation being size compatible with the patient.

For the case of two sizes (S = 2), Figure 1 illustrates the liver donation partial order ≥
over the corners of the three-dimensional cube T = {0, 1}3.

A patient of type X ∈ T and a donor of type Y ∈ TD are left-lobe compatible if

X ≤ Y `. Since the right lobe is larger than the left lobe, the right-lobe-donation technology

increases the set of potential exchanges and direct donations. However, because it involves

8The relation ≥ in (T,≥) is the usual coordinate-wise partial order over integer vectors in Euclidean
n-dimensional space: for all a = (a1, . . . an), b = (b1, . . . , bn) ∈ Zn

+ we say a ≥ b if ak ≥ bk for all k. Its
asymmetric part is denoted as >: a > b if ak ≥ bk for all k and ak > bk for some k; its symmetric part is
denoted as =: a = b if ak = bk for all k.

9We have the only exception for a donor type with a largest size, S − 1 left lobe. We assume for such
a type left lobe and right lobe are of the largest size S − 1. This is assumed for notational convenience of
defining one size set S for both patient needs and donor lobe sizes and terminological convenience of saying
there are S sizes. For such a donor type, the right lobe is never donated as its left lobe is large enough for
all patient types. This assumption is made for notational simplicity as well as in order to avoid introducing
two separate sets of sizes, one for the patients and other for the liver lobes.
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Figure 1: The partially ordered set (T,≥) using its blood type/size representation with two sizes
small (s) and large (l), and its integer vector representation.

higher risks for the donor, it is less preferred than left-lobe donation. Therefore, for donors

who can feasibly donate their left lobes to a patient, we assume that right-lobe donation is

not a viable option. A patient of type X ∈ T and a donor of type Y ∈ TD are right-lobe-

only compatible if the donor can donate his right lobe to the patient, but not his left lobe,

i.e., X ≤ Y r and X 6≤ Y `.

3 Liver Exchange

As in kidney exchange, the number of living-donor liver transplants can be increased

through exchange of donors. Living-donor liver transplantation is a more complex medical

procedure than living-donor kidney transplantation, in part because only a portion of the

donor’s liver is transplanted to the patient, and hence a detailed analysis of patient and

donor anatomies is required. Hence the logistics of liver exchange gets more complicated

as the number of pairs increase in an exchange. Indeed, in a recent paper proposing an

organized liver exchange to the members of the transplantation community, Mishra et. al.

(2018) suggest:

As with the initial experience with KPE, it is anticipated that LPE would begin

with 2-way swaps, the simplest form of exchange.

Consistent with their suggestion, we assume that only two-way exchanges are feasible.10

3.1 Liver-Exchange Pool

Each patient participates in liver exchange with one donor. A patient and her donor are

referred to as a pair.11 The observable characteristics of a pair are summarized by an ordered

10All liver exchanges reported in the literature as of October 2019 are between two patients and their
donors.

11We use pronouns “she” for a patient, “he” for a donor, and “it” for a pair.
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pair of individual types X − Y ∈ T × TD, where X denotes the type of the patient and Y

denotes the type of the donor; X − Y is called the pair type.12

A liver-exchange pool is a tuple (I, τ) where

1. I = {1, 2, . . . , K} is a finite set of patient-donor pairs, and

2. τ : I → T×TD is a function, such that, for every pair i ∈ I, τ(i) is its pair type.

For every pair i ∈ I, we denote its type as τ(i) = τP (i) − τD(i), where τP (i) ∈ T is the

type of the patient of the pair, and τD(i) ∈ TD is the type of the donor of the pair.

Moreover, given a pair i ∈ I, let τ `D(i) ∈ T denote the type of its donor’s left lobe, and

τ rD(i) ∈ T denote the type of its donor’s right lobe.

Throughout the paper, we fix a liver-exchange pool (I, τ).

3.2 Feasible Grafts and Assignments

Since we rule out the possibility of right-lobe donation when a donor can more safely

donate his left lobe, there is a unique donation “mode” between any donor and patient: For

any two pairs (i, j) ∈ I × I, the donor of pair j can either feasibly donate his left lobe, or

his right lobe, or neither lobe to the patient of pair i. The following function keeps track

of which lobe is to be donated (if any) in any potential assignment. Define the transplant

type function t : I × I → {`, r, ∅} as follows: For any (j, i) ∈ I × I,

t(j, i) =


` if τP (i) ≤ τ `D(j)

r if τP (i) � τ `D(j) & τP (i) ≤ τ rD(j)

∅ otherwise

For any two pairs j and i, the transplant type function t(·) determines whether the donor of

the first pair j and the patient of the second pair i are left-lobe compatible (`), right-lobe-only

compatible (r), or incompatible (∅). Define t(i) ≡ t(i, i) for any i ∈ I.

For any pair i ∈ I, define

C(i) ≡
{
j ∈ I : t(j, i) 6= ∅

}
be the set of pairs from whom the patient of i can receive a transplant. Since the transplant

type function uniquely determines which lobe of a compatible donor is to be transplanted to

a patient, the set C(i) also uniquely defines the set of feasible grafts for the patient of pair i.

That is, for the patient of pair i

• the left lobe of the donor of pair j is feasible if and only if j ∈ C(i) and t(j, i) = `, and

• the right lobe of the donor of pair j is feasible if and only if j ∈ C(i) and t(j, i) = r.

12We refer to a pair type as X − Y instead of (X,Y ) as a convention.
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With a slight abuse of terminology, we will also refer to set C(i) as the set of feasible

grafts for the patient of pair i.

3.3 Preferences

There are three types of possible outcomes for a pair i:

1. The patient of pair i receives her own donor’s feasible graft in a direct transplant.

2. Pair i exchanges donors with another pair to form a (two-way) exchange, so that

the patient of each pair receives from the other pair’s donor the graft indicated by the

transplant type function.

3. Pair i remains unmatched and its patient does not receive a transplant. This outcome

is denoted as ∅.

In any potential exchange, both patients have to receive a transplant. Hence, define the set

of (feasible) assignments for pair i as

E(i) ≡
{
j ∈ C(i) : i ∈ C(j)

}
.

A patient can receive a left lobe of her own paired donor if she is left-lobe compatible with

her donor, or a right lobe of her own paired donor if she is right-lobe-only compatible with

him. Formally, we say that a pair i is compatible if i ∈ E(i).

Since the function t(i, ·) uniquely identifies which lobe the donor of pair i donates in any

assignment in E(i), we can further partition the set E(i) based on the donated lobe:

E `(i) ≡
{
j ∈ C(i) : i ∈ C(j) and t(i, j) = `

}
, and

Er(i) ≡
{
j ∈ C(i) : i ∈ C(j) and t(i, j) = r

}
.

We say that pair i is left-lobe compatible if i ∈ E `(i) and it is right-lobe-only compat-

ible if i ∈ Er(i).

We interpret a patient-donor pair as a single agent in our model, and thus, preferences

refer to preferences of the pair. Patients or donors do not have preferences of their own.

Preferences of a pair depend on the following three factors:

1. Observable characteristics of the received compatible graft.

2. Whether the donor donates his left lobe or his right lobe.

3. Whether the patient receives a graft through direct transplant or through an exchange.

For any pair i ∈ I, the preference relation Ri is defined over the set E(i) ∪ {∅}; that is,

Ri ⊆
(
E(i) ∪ {∅}

)
×
(
E(i) ∪ {∅}

)
. Let Pi denote the asymmetric part and Ii denote the

symmetric part of Ri.

In order to motivate the restrictions we make on preferences, we next discuss the role of
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each of these factors on liver transplantation.

3.3.1 Preferences on Observable Characteristics of a Graft

While blood-type compatibility and size compatibility are the primary considerations for

liver transplantation, to a lesser extent other factors (such as the age of the donor) can also

influence the outcome. As a result, other things being equal, a pair may prefer one compatible

graft to another, even if they are of the same type. For a given pair i, let the weak order %i
represent the received-graft preference relation over the set of feasible grafts C(i), with

its asymmetric part indicated by �i and symmetric part indicated by ∼i.

Since it purely depends on observable donor characteristics and determined based on

agreed-upon medical criteria, we assume that the received-graft preference relation %i is

public information.

Given the high risk to donors, their screening is very strict for living-donor liver trans-

plantation, and donation is ruled out unless the donor is in perfect health and the benefit to

the patient is sufficiently high. Grafts must be sufficiently large (usually 40% of the patient’s

liver volume) to minimize the risk of small-for-size syndrome, a condition where a patient

develops liver dysfunction and ascites when the transplanted graft is too small. As a result,

the expected benefit to the patient is “similar” between any two grafts deemed compatible

for the patient. It is also possible that the central planner may choose to disclose informa-

tion on patient-donor compatibility only, and may not make any additional information on

pairs available to third parties. Indeed, this is often the case for kidney exchange, where

patient-donor pairs do not meet until after the exchange has taken place, and they only meet

if each person agrees. In this likely scenario, pairs will be assumed to be indifferent between

all compatible grafts under the received-graft preference relation %i.

Based on these observations, any asymmetric part of the received-graft preference relation

on compatible grafts will play a secondary role of a “tie-breaker” on the preferences of a pair.

3.3.2 Preferences on Left-Lobe Donation vs. Right-Lobe donation

While the expected benefit to a patient is similar for all compatible grafts, donor mortality

and morbidity risks differ considerably between left-lobe donation and right-lobe donation.

Based on the 2006 Vancouver Forum report, mortality rate exceeds 0.4% for right-lobe do-

nation in contrast to approximately 0.1% for left-lobe donation.13 Morbidity rates to the

donor, frequency of significant medical complications other than mortality per donation, are

also much higher under right-lobe donation. Mishra et al. (2018) report that the morbidity

rates are 28% for right-lobe donation and 7.5% for left-lobe donation. As a result, pairs have

a strong preference for their donors to donate their left lobes rather than their right lobes.

Indeed, pairs may not be willing to have their donors to donate their right lobes at all. We

13More recent reports give similar mortality rates.
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refer to such pairs as unwilling (u). Pairs that are open to the possibility of right-lobe

donation from their donors, on the other hand, are referred to as willing (w).

Formally,

• for an unwilling pair i, for all j ∈ E `(i) and j′ ∈ Er(i),

j Pi ∅ Pi j′, and

• for a willing pair i, for all j ∈ E(i),

j Pi ∅.

Whether a pair i is willing or unwilling is its private information.

Importantly, willingness of a pair is assumed to be independent of the graft received by

its patient and whether it is received through a direct transplant or an exchange. Therefore,

which lobe is donated by the pair is the primary consideration in their preferences. We show

in Example A-1 in Appendix C.1 that, in the absence of this assumption, a mechanism that

is Pareto efficient, individually rational, and incentive compatible may fail to exist. However,

it is important to emphasize that, this technical result is not the only justification for our

assumption. Even though the risk-benefit ratio, one of the key considerations in living-donor

organ transplantation, is highly responsive to whether the left or right lobe donated by the

donor, it is relatively irresponsive to the received graft by the patient. Hence the preferences

largely depending on whether the left or right lobe is donated is a fairly realistic assumption.

Indeed, this assumption is supported by the findings of Molinari et al. (2014), where the

authors analyze living liver donors’ risk thresholds using decision analysis techniques based

on the probability trade-off method. They report that the decision to donate largely depends

on various risks and burdens to the donor along with expected life gain for the patient. Based

on their analysis, one can infer that the lobe to be donated is key in the decision to donate for a

significant percentage of the pairs. For example, the authors report that while more than 95%

of the donors are willing to accept a morbidity rate of 10% (i.e. the approximate morbidity

rate from left-lobe donation), less than 70% of them are willing to accept a morbidity rate

of 30% (i.e. the approximate morbidity rate from right-lobe donation).14

14Other key factors reported in Molinari et al. (2014) such as donor’s mortality risk, donor’s risk for
decreased physical capacity, duration of donor’s hospital stay, donor’s time off work and donor’s financial
burden also suggest that the specific lobe to be donated is key for a significant proportion of pairs in their
decision to donate. In contrast, the findings in Molinari et al. (2014) also suggest that decision to donate is
unlikely to be affected by the specific liver graft received by the patient, provided that the transplantation is
justified based on the medical norms on acceptable risk-benefit ratio for the transplant: The authors report,
88% of the participants would donate for a gain of 1 year, 95% would donate for a gain of 3 years, and 98%
would donate for a gain of 5 years. Therefore, given the 3-year survival rate of 83% and the 5-year survival
rate of 78% reported by Goldberg et al. (2014), the specific graft the patient receives virtually plays no role
in the decision to donate. Therefore, we not only expect heterogeneity in willingness for right-lobe donation,
but also the preferences to primarily depend on which lobe is to be donated by the donor.
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3.3.3 Direct Donation Bias

In real-life applications of kidney exchange, it is well established that most pairs have

a direct-transplant bias , which means a compatible pair opts for a direct transplant even

when its patient is committed to receive a more-favorable kidney through exchange. This

preference can have a time-preference component: the exchange option involves more waiting

than direct transplant, which can be realized without finding a suitable exchange partner and

expectation of a more-favorible match than a direct transplant may not outweigh this waiting

cost. Often it also has an emotional component: direct donation from a loved one may induce

a higher utility for the pair than a donation from a third-party.

In an organized liver exchange, we expect the direct donation bias to be also prevalent,

unless the risk to the donor can be reduced through a much safer left-lobe donation. While

we do not expect many compatible pairs to participate in exchange in the absence of this

tangible benefit, we allow for it in our model. We will assume, however that, a possible

direct-transplant bias never dominates the safety concerns for the donor, and as such a pair

always prefers an exchange with a left-lobe donation to a direct-transplant of the right lobe.

We also rule out the possibility of a “mild” direct-transplant bias in the sense that, subject

to donating the same lobe, a pair that has a direct-transplant bias strictly prefers direct-

transplant to any other graft through exchange. We show in Example A-2 in Appendix C.1

that, in the absence of this assumption, a mechanism that is Pareto efficient, individually

rational, and incentive compatible may fail to exist.

To capture this private-information component of the preference relation, we introduce

two participation types for left-lobe or right-lobe-only compatible pairs.

A left-lobe compatible or a right-lobe-only compatible pair i is a transplant maximizer

(m) if,

for all j, j′ ∈ E `(i) j Ri j
′ ⇐⇒ j %i j

′

for all j, j′ ∈ Er(i) j Ri j
′ ⇐⇒ j %i j

′

for all j ∈ E `(i) and j′ ∈ Er(i) j Pi j
′

A right-lobe-only compatible pair is direct-transplant biased (d) if,

for all j ∈ E `(i) j Pi i

for all j ∈ Er(i) \ {i} i Pi j

A left-lobe compatible pair i is direct-transplant biased (d) if,

for all j ∈ E(i) \ {i} i Pi j
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Observe that, a direct-transplant-biased left-lobe compatible pair has no reason to participate

in exchange.

3.3.4 Preference Domain

For each pair i ∈ I, fix the public information received-graft preference relation %i.

Given the restrictions described in Sections 3.3.1-3.3.3, each pair has one of the four possible

preference relations R
m/w
i , R

m/u
i , R

d/w
i , R

d/u
i , depending on whether it is willing or unwilling,

and whether it is direct-transplant biased or transplant maximizer:

• For a willing transplant maximizer pair i, the possible outcomes are ranked as follows

under its transplant maximizer/willing preference relation R
m/w
i :

1. Feasible direct transplant and exchanges in which the pair donates a left lobe are

ranked in order of its received-graft preferences %i.

2. Feasible direct transplant and exchanges in which the pair donates a right lobe are

ranked in order of its received-graft preferences %i.

3. The pair is unmatched.

• For an unwilling transplant maximizer pair i, the possible outcomes are ranked in the fol-

lowing order under its transplant maximizer/unwilling preference relation R
m/u
i :

1. Feasible direct transplant and exchanges in which the pair donates a left lobe are

ranked in order of its received-graft preferences %i.

2. The pair is unmatched.

3. Feasible direct transplant and exchanges in which the pair donates a right lobe are

ranked in order of its received-graft preferences %i.

• For a willing direct-transplant-biased pair i, the possible outcomes are ranked in the fol-

lowing order under its direct-transplant biased/willing preference relation R
d/w
i :

1. Feasible left-lobe direct transplant if i is left-lobe compatible.

2. Feasible exchanges in which the pair donates a left lobe are ranked in order of its

received-graft preferences %i.

3. Feasible right-lobe direct transplant if i is right-lobe-only compatible.

4. Feasible exchanges in which the pair donates a right lobe are ranked in order of its

received-graft preferences %i.

5. The pair is unmatched.

• For an unwilling direct-transplant-biased pair i, the possible outcomes are ranked in the

following order under its direct-transplant biased/unwilling preference relation

R
d/u
i :

1. Feasible left-lobe direct transplant if i is left-lobe compatible.

2. Feasible exchanges in which the pair donates a left lobe are ranked in order of its

received-graft preferences %i.

3. The pair is unmatched.
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4. Feasible right-lobe direct transplant if i is right-lobe-only compatible.

5. Feasible exchanges in which the pair donates a right lobe are ranked in order of its

received-graft preferences %i.

Let Ri = {Rm/w
i , R

m/u
i , R

d/w
i , R

d/u
i } denote the set of possible preference relations for pair i.

An assignment j ∈ E(i) is individually rational for a pair i under a preference relation

Ri if

j Ri ∅ whenever i 6∈ E(i), and

j Ri ∅ and j Ri i whenever i ∈ E(i).

That is, an assignment is individually rational if it is not only weakly preferred to remaining

unmatched, but also to a direct transplant whenever the pair is compatible. Individual ratio-

nality is important because, no donor can be enforced for a donation he does not volunteer

for. At any time during the donation process a living donor may change his or her mind.

Throughout our analysis, we focus on individually rational outcomes.15

Observe that

• if pair i is incompatible, i.e., i 6∈ E(i), then the two willing preferences coincide, i.e.,

R
m/w
i = R

d/w
i , and the two unwilling preferences also coincide, i.e., R

m/u
i = R

d/u
i ;

• if pair i is left-lobe compatible, i.e., i ∈ E `(i), then the individually rational assignments

are ranked the same way under the two transplant maximizer preferences, R
m/w
i and

R
m/u
i , and also the same way under the two direct-transplant-biased preferences, R

d/w
i

and R
d/u
i ; and

• if pair i is right-lobe-only compatible, i.e., i ∈ Er(i), then the individually rational assign-

ments are ranked the same way under the two unwilling preferences, R
m/u
i and R

d/u
i .

Let R = R1 × . . .×RK denote the set of preference profiles.

We refer to a triple (I, τ, R), i.e., the liver-exchange pool together with the pair preference

profile, as a liver-exchange problem. Since we fix the exchange pool, it is often denoted

by the preference profile R.

15As we focus on individually rational assignments in our analysis, by slight abuse of the definition of
preference types, we sometimes assume that the ranking of assignments inferior to remaining unmatched or
a direct transplant (for a compatible pair) is arbitrary.
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3.4 Outcome of the Problem: A Matching

We are ready to define the outcome of a liver-exchange problem. The set of all mutually

compatible matches Ec is given as follows: 16

Ec ≡
{
{i, j} ⊆ I : j ∈ E(i)

}
.

A match {i, j} ∈ Ec is a (two-way) exchange if i 6= j and a direct transplant if i = j.

The compatibility graph is defined as the undirected graph, with the pairs as its nodes

and the mutually compatible matches as its edges, Gc = (I, Ec).17

Given a compatibility graph Gc = (I, Ec), a matching M ⊆ Ec is a collection of com-

patible matches such that

for all ε, ε′ ∈M, ε ∩ ε′ 6= ∅ =⇒ ε = ε′.

That is, no pair participates in two distinct exchanges or both in a direct transplant and in an

exchange at the same time. Let Mc be the set of matchings supported by the compatibility

graph Gc.

We denote the assignment of pair i ∈ I in matching M ∈Mc as M(i). If M(i) = i (i.e.,

{i} ∈ M), then the pair participates in a direct transplant. If M(i) = j for some j 6= i (i.e.,

{i, j} ∈ M), then pairs i and j participate in an exchange. If M(i) = ∅ (i.e., there is no

ε ∈M such that i ∈ ε), then pair i remains unmatched.

Consider a match {i, j} (possibly with i = j) in a matching M . Since a donor only

donates a right lobe when his left lobe is too small for the intended receiver, which lobe is

donated by either donor is uniquely determined by the match {i, j}. The same argument

also holds for the entire matching M .

To summarize, each matching M is a collection of direct transplants and exchanges, and

together with the function t(·), it also uniquely specifies which liver lobe is donated by each

donor: For any {i} ∈ M , the pair i engages in a direct left-lobe transplant if t(i) = ` and in

a direct right-lobe transplant if t(i) = r. Similarly, for any {i, j} ∈M such that i 6= j,

• the pairs i and j engage in a two-way exchange,

• the donor of i donates his left lobe if t(i, j) = ` and his right lobe if t(i, j) = r, and

• the donor of j donates his left lobe if t(j, i) = ` and his right lobe if t(j, i) = r.

The preferences introduced in Subsection 3.3 can be directly extended to the set of match-

ings. We slightly abuse the notation, and let Ri also denote the resulting preference relation

16Observe that this definition allows for a loop {i, i} = {i} to be in Ec. This depicts that the donor of pair
i can donate to the patient of the pair.

17Graph theoretical preliminaries are stated formally in Appendix A. Some of our current definitions are
restated for general graphs in this appendix, as well.
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over all matchings Mc defined as:

M Ri M
′ ⇐⇒ M(i) Ri M

′(i).

3.5 Mechanisms and Axioms

Although the types of the participating pairs and their received-graft preferences are

observable, their pair preferences (or equivalently their willingness for a right-lobe donation

and whether they have direct-transplant bias) are not. A (direct) mechanism determines a

matching as a function of the reported preference profile.

Since we fix an exchange pool (I, τ) and a received-graft preference profile %= (%i)i∈I
throughout, we define a mechanism as a function f : R→Mc.

A matching M ∈Mc is individually rational (IR) at a preference profile R ∈ R, if for

every pair i ∈ I, either

1. M(i) is an individually rational assignment at R, or

2. M(i) = ∅ and a direct transplant is not an individually rational assignment for i.

A mechanism f is individually rational (IR) if f [R] is individually rational at R for any

R ∈ R.

A matching M ∈ Mc is Pareto efficient (PE) at a preference profile R ∈ R if there

does not exist a matching M ′ ∈Mc such that M ′ Ri M for all i ∈ I and M ′ Pi M for some

i ∈ I. A mechanism f is Pareto efficient (PE) if f [R] is Pareto efficient at R for any

R ∈ R.

A mechanism f is incentive compatible (IC) if for all i ∈ I, R−i ∈
∏

j 6=i Rj and

Ri, R̂i ∈ Ri,

f [Ri, R−i] Ri f [R̂i, R−i].

4 An Efficient and Incentive-Compatible Mechanism

In this section we introduce a mechanism that is individually rational, Pareto-efficient,

and incentive-compatible. In order to do so, we will make a number of key observations about

the structure of the problem, and develop the tools required to equip a priority matching

mechanism with the “safeguards” to avoid two potential complications due to availability of

dual transplantation technologies for liver exchange.

4.1 Challenges to Overcome

While the starting point of our design is a priority mechanism, it has to be considerably

modified to maintain Pareto efficiency and incentive compatibility. Under the most basic form
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of a priority mechanism, agents are committed (to the extent it is feasible) to be matched with

one of their best possible matches –one at a time– following a fixed priority ordering. When

there is a single transplantation technology (as in kidney exchange), and assuming agents

are indifferent among all their individually rational assignments, this simple mechanism is

not only Pareto efficient, but also incentive compatible when individually rational matches

of agents are of private information (Roth, Sönmez, and Ünver (2005) and Sönmez and

Ünver (2014)). As we show in our next example, the priority mechanism in this basic form

is no longer incentive compatible in our model due to the presence of dual transplantation

technologies.

Example 1 There is a set of three incompatible pairs I = {i1, i2, i3} with the following types:

τP (i1) = (0, 1, 1) τD(i1) = (1, 0, 1, 2)

τP (i2) = (1, 0, 1) τD(i2) = (0, 1, 0, 1)

τP (i3) = (0, 1, 0) τD(i3) = (1, 0, 0, 1)

This pool of pairs result in the following set of feasible matches

Ec =
{
{i1, i2}, {i2, i3}

}
,

and the following transplant type function

t(i1, i2) = `, t(i1, i3) = ∅, t(i2, i1) = r, t(i2, i3) = `, t(i3, i1) = ∅, t(i3, i2) = r.

Suppose all pairs are willing and none of them have a direct-transplant bias. That is, each pair

i ∈ I has the preference relation R
m/w
i . The compatibility graph of this problem is depicted

in Figure 2.

i1
011-1012 w

i2
101-0101 w

i3
010-1001 w

rℓ rℓ
1 2

Figure 2: The compatibility graph for Example 1. All pairs are willing. The left- and right-lobe
donations are denoted by letters ` and r, respectively. There are two individually rational exchanges.

Let us find the outcome of the priority mechanism for the priority order

Π = i1 − i2 − i3.

First, we process pair i1. Since exchange {i1, i2} is the only feasible match for pair i1, the
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priority mechanism commits for the exchange {i1, i2}. Next, we process pair i2. Pair i2 is

already committed for a specific match, i.e. with pair i1. Finally, we process pair i3. There

is no exchange that can match i3 in addition to i1 and i2. So the outcome of the priority

mechanism is the matching

M =
{
{i1, i2}

}
,

where the donor of pair i1 donates a left lobe, whereas the donor of pair i2 donates a right

lobe.

On the other hand, if pair i2 declares itself as unwilling reporting its preferences as R
m/u
i ,

the exchange {i1, i2} ceases to be individually rational, and thus pair i2 enforces the priority

mechanism to pick the unique individually rational exchange resulting with the matching

M ′ =
{
{i2, i3}

}
.

The donor of pair i2 donates a left lobe under this alternative exchange, and thus the pair

benefits from this manipulation.

Given the priority order Π, the priority mechanism enforces pair i2 in Example 1 for

a right-lobe donation, even though this pair is in a position to enforce an outcome where

not only its patient receives a transplant, but also its donor donates the much safer left

lobe. This example motivates our first departure from a basic priority mechanism: Under

the modified mechanism, while we order pairs in a priority list and sequentially commit

to matching them –one at a time– whenever it is feasible, we consider pairs for right-lobe

donation only after their left-lobe donation possibilities are exhausted. Importantly, a pair’s

left-lobe donation possibilities include those exchanges where other pairs donate right lobes.

Under our modification, right-lobe donation from a pair is to be considered only when these

possibilities are exhausted as well. It is easy to see that, this modification restores incentive

compatibility of the mechanism. However, restoring incentive compatibility with this simple

fix may come at the expense of losing Pareto efficiency. We illustrate this possibility with

the following example:18

Example 2 There is a set of three incompatible pairs I = {i1, i2, i3} with the following set

of feasible matches

Ec =
{
{i1, i2}, {i2, i3}, {i3, i1}

}
,

and the transplant type function

t(i1, i2) = r, t(i1, i3) = `, t(i2, i1) = `, t(i2, i3) = r, t(i3, i1) = r, t(i3, i2) = `.

18We will later show that the compatibility graph given in Figure 3 of Example 2 cannot be generated by
a liver-exchange problem. That is why the types of pairs are not given in Example 2.
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Suppose all pairs are willing and none of them have a direct-transplant bias. That is, each pair

i ∈ I has the preference relation R
m/w
i . The compatibility graph of this problem is depicted

in Figure 3.

i1 i2

ℓ

r
1

i3

2

ℓ

ℓ

r

r

3

Figure 3: The compatibility graph for Example 2. All pairs are willing. The left- and right-lobe
donations are denoted by letters ` and r. There are three individually rational exchanges.

The two critical observations in this example are:

1. each of the three feasible exchanges involves one left-lobe donation and one right-lobe

donation, and

2. each of the three pairs is part of two feasible exchanges, one with a left-lobe donation,

and another with a right-lobe donation.

What this means is, the only left-lobe donation possibility for each pair depends on a right-lobe

donation from another pair. As such, our proposed modification of “right-lobe donation from

a pair is to be considered only when its left-lobe donation possibilities are exhausted” simply

means, no exchange can be picked by the modified priority mechanism, no matter how pairs

are priority ordered.

For example, suppose the pairs are processed following the priority order

Π = i1 − i2 − i3.

Pair i1 is processed first. There is no left-lobe-only exchange in the problem, and at this

initial stage of the modified process no pair is to be considered for right-lobe donation. Hence

pair i cannot be committed for an assignment just yet. On the other hand, since {i1, i3} is

a feasible match with t(i1, i3) = ` and t(i3, i1) = r, pair i1 can donate a left lobe if pair i3

donates a right lobe. Thus, pair i1 cannot be made available –just yet– for right-lobe donation

either. Hence, under our proposed modification, the process has to bypass pair i1, neither

committing it an assignment, nor making it available for a right-lobe donation. Moreover,

exactly analogous situation occurs for pairs i2 and i3 in steps 2 and 3, respectively. Therefore,

no exchange becomes permissible under our proposed modification, and thus no exchange is

conducted.

This is clearly a Pareto inefficient outcome since picking any of the individually rational
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exchanges, each involving one left-lobe donation and one right-lobe donation, results in a

Pareto improvement.

The failure of the priority matching approach in Example 2 is directly linked to the

existence of a cycle of exchanges, in which

• each pair donates a right lobe clockwise in the cycle, and

• a left lobe counter-clockwise in the cycle.

As it turns out, this difficulty is not unique to our priority matching approach. In Proposition

1 of Appendix C.1, we show that the existence of a left-lobe–right-lobe exchange cycle of any

number of pairs in the underlying compatibility graph, rules out the existence of a mechanism

that is individually rational, Pareto-efficient, and incentive compatible.

This negative result, however, does not imply that the priority matching approach has to

be fruitless in our model. Observe that, unlike in Example 1, we have not given the types of

pairs in Example 2. We have only given a set of (allegedly) feasible exchanges, along with a

transplant type function that gives rise to a compatibility graph with a left-lobe–right-lobe

exchange cycle. As we show in Lemma 1 in Section 4.2, one of the key observations in our

paper, the existence of such a cycle is ruled out in our model.

We next formalize the structure that rules out a left-lobe–right-lobe exchange cycle in

our model.

4.2 The Precedence Digraph

Consider two pairs of types X − Y, U − V ∈ T×TD. Suppose that, while the two pairs

cannot form a left-lobe-only exchange, they can form an exchange where the donor of type

Y donates his right lobe to the patient of type U , and the donor of type V donates his left

lobe to the patient of type X. Observe that, the two pairs cannot form an exchange where

the donor of type V donates his right lobe to the patient of type X, and the donor of type

Y donates his left lobe to the patient of type U , for otherwise they could have formed a

left-lobe-only exchange as well. Therefore, just focusing on these two pairs for the moment,

it would be plausible to avail the pair of type X −Y for right-lobe donation prior to the pair

of type U −V , because the left-lobe-exchange possibilities of the pair of type U −V expands

with the availability of type X − Y pair for right-lobe donation.

We can extend this line of reasoning to problems with more than two pairs as well,

provided that there are no left-lobe–right-lobe exchange cycles (of the sort we have seen in

Example 2) in the following directed graph.

Definition 1 The precedence digraph (T×TD, Dτ ) is a directed graph where,

1. each pair type in T×TD is a node,
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Figure 4: The precedence digraph with two sizes (S = 2) when left-lobe compatible pairs do not
participate in exchange. We only denote left-lobe size of the donor types in this depiction, as their
right-lobe size is uniquely determined by their left-lobe size. 16 pair types have no adjacent edges
in the digraph, so those are not shown.

2. there is a directed edge from type X − Y to type U − V , denoted as X − Y −→ U − V ,19

if and only if

X ≤ V `, U 6≤ Y ` & U ≤ Y r, and

3. Dτ is the resulting set of directed edges.

We say that X − Y precedes U −V , whenever X − Y −→ U −V . In a precedence digraph,

type X − Y precedes type U − V if

• a donor of type V can donate his left lobe to a patient of type X, whereas

• a donor of type Y can donate his right lobe but not his left lobe to a patient of type U .

In this case, the two pairs fail to form a left-lobe-only exchange, but they can form an

exchange once the pair of type X − Y becomes available for right-lobe donation.

Figure A-16 in Appendix E depicts the precedence digraph for the case of two sizes

S = {0, 1} such that

for all Y ∈ TD, Y3` = 0 =⇒ Y3r = 1

when potentially all pair types are available for exchange. Figure 4 depicts the precedence

digraph for the same case, but when only left-lobe incompatible pair types are available for

exchange. Figure A-17 in Appendix E depicts the precedence digraphs for the case of three

sizes S = {0, 1, 2} such that

for all Y ∈ TD, [Y3` = 0 =⇒ Y3r = 1] and [Y3` = 1 =⇒ Y3r = 2]

when only left-lobe incompatible pair types are available for exchange.

19This directed edge is also denoted as (X − Y,U − V ).
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Note that the precedence digraphs in Figures 4, A-16, and A-17 are all acyclic. This

observation is not specific to these examples. As stated by the next lemma, the precedence

digraph for any liver-exchange pool is acyclic.

Lemma 1 The precedence digraph (T×TD, Dτ ) is acyclic.

Proof of Lemma 1: Suppose for a contradiction that the precedence digraph has a cycle:

X(0) − Y (0) −→ X(1) − Y (1) −→ . . . −→ X(n−1) − Y (n−1) −→ X(0) − Y (0)

where n ≥ 2.

Note that for each k ∈ {0, 1, . . . , n − 1} where all indexes are written in modulo n (i.e.,

n ≡ 0)

X(k) − Y (k) −→ X(k+1) − Y (k+1) −→ X(k+2) − Y (k+2)

implies that X
(k)
3 ≤ Y

(k+1)
3` . It also implies that Y

(k+1)
3` < X

(k+2)
3 since Y (k+1) ` 6≥ X(k+2) and

Y (k+1) r ≥ X(k+2). Therefore, X
(k)
3 < X

(k+2)
3 . That is, a patient along the cycle has a smaller

size than the patient two steps ahead in the cycle. This can be used to obtain a contradiction

in two separate cases:

Case 1 “n is even”: X
(0)
3 < X

(2)
3 < . . . < X

(n−2)
3 < X

(0)
3 .

Case 2 “n is odd”: X
(0)
3 < X

(2)
3 < . . . < X

(n−1)
3 < X

(1)
3 < X

(3)
3 < . . . < X

(n−2)
3 < X

(0)
3 . �

We extend the precedence digraph on the set of types of pairs T×TD to the set of pairs

I. Let (T×TD, Dτ ) be the precedence digraph of types of pairs. Construct a digraph (I, D)

such that for any two types X − Y, U − V ∈ T × TD and for any two pairs i, j ∈ I such

that τ(i) = X − Y and τ(j) = U − V :

(i, j) ∈ D ⇐⇒ (X − Y, U − V ) ∈ Dτ .

We refer to (I, D) as the precedence digraph on I.

A topological order Π of the precedence digraph (I, D) is a linear order over I such

that for all i, j ∈ I,

(i, j) ∈ D =⇒ i Π j.

Thus, whenever there is a feasible exchange {i, j} in which pair i donates a right lobe (but

cannot donate a left lobe) and pair j donates a left lobe, pair i is prioritized before pair j in

a topological order of this digraph.

For a general digraph, a topological order may not exist. However, by Lemma 1, the

precedence digraph on I is also acylic, and by Lemma 4 (in Appendix A), which states

that every acyclic digraph has a topological order, there exists a topological order of the
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precedence digraph on I. We illustrate this concept with a simple example:

Example 3 In the problem given in Example 1, the precedence digraph over pairs (I, D) has

the following directed edges:

D =
{

(i2, i1), (i3, i2)
}
.

There is a unique topological order of this digraph:

Π′ = i3 − i2 − i1.

In order to maintain Pareto efficiency and incentive compatibility, our proposed mecha-

nism uses a topological order to iteratively process pairs by (1) checking whether pairs can be

matched while donating their left lobes, and (2) if they cannot but are willing, making them

available as right-lobe donating pairs so that they can potentially be matched by donating

their right lobes.

4.3 Transformations and Deletions

In Section 4.2 we have established the existence of a priority ordering, the topological

order, that can potentially help us to overcome the challenges presented in Section 4.1. We

next present some additional tools to facilitate the introduction of our proposed mechanism.

Fix a problem with the compatibility graph Gc = (I, Ec). For any set of matches E ′ ⊆ Ec,

the graph G′ = (I, E ′) is referred to as a reduced compatibility graph.

For any set of matches E ′ ⊆ Ec with the reduced compatibility graph G′, let M[G′] ⊆Mc

denote the resulting set of matchings. That is,

M ∈M[G′] ⇐⇒ M ∈Mc and M ⊆ E ′.

Also denote the set of matches involving i in E ′ as

E ′(i) = {ε ∈ E ′ : i ∈ ε} .

For two reduced compatibility graphs G′ = (I, E ′) and G′′ = (I, E ′′) with E ′′ ⊆ E ′, we

refer to G′′ as a subgraph of G′.

Given a preference profile R′ ∈ R, let EIR[R′] ⊆ Ec denote the set of individually

rational matches, where, for any i, j ∈ I,

{i, j} ∈ EIR[R′] ⇐⇒


jR′i∅ and if i ∈ E(i) then jR′ii

and

iR′j∅ and if j ∈ E(j) then iR′jj
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The reduced compatibility graph GIR[R′] = (I, EIR[R′]) is referred to as the individually

rational (IR) compatibility graph for R′.

In a general graph (i.e. not necessarily the compatibility graph of a liver-exchange pool)

in which all pairs are indifferent between all exchanges, one has to recursively expand the

set of simultaneously matchable pairs to find an efficient matching (e.g., as in the cardinality

matching algorithm of Edmonds, 1965). While we allow for more general preferences in our

model, we still rely on similar tools to design our mechanism.

A set of pairs J ⊆ I is matchable in a reduced compatibility graph G′ = (I, E ′), if

there exists a matching M ∈M[G′] such that M(j) 6= ∅ for all j ∈ J .20

Fix a pair i ∈ I, a preference relation Ri ∈ Ri, a reduced compatibility graph G′, and

a set of pairs J ⊂ I \ {i} such that J ∪ {i} is matchable in G′. When members of J are

all committed to be matched, define the set of achievable assignments of pair i (while

members of J are all matched) as

A(i|J , G′) =
{
j ∈ I : ∃M ∈M[G′] such that M(h) 6= ∅ ∀h ∈ J and M(i) = j

}
,

and the set of best achievable assignments of i (while members of J are all matched) as

B(i|J , G′) ≡ max
Ri

A(i|J , G′).

Whenever a pair j is an achievable assignment for a pair i, the corresponding match {i, j}
is referred to as an achievable match. Similarly, whenever a pair j is a best achievable

assignment for a pair i, the corresponding match {i, j} is referred to as a best achievable

match.

Whether a set of pairs is matchable or not can be checked in polynomial time.21 Moreover,

sets A(·) and B(·) can also be constructed in polynomial time.

We obtain the outcome of our proposed mechanism through an iterative algorithm in-

troduced in Section 4.4. At each step, the algorithm determines whether certain pairs are

matchable in a reduced compatibility graph that we refer to as the active graph of the

algorithm. Using this information and the information on right-lobe donation willingness of

pairs, the active graph is revised as we proceed through the algorithm. At the initiation of our

algorithm, the active graph is the reduced compatibility subgraph consisting of left-lobe-only

individually rational matches. If necessary, right-lobe transplant possibilities are introduced

to the active graph in subsequent steps.

To formalize the definition of the initial active graph, we define R0 as an auxiliary pref-

20Our definition of matchability differs from the standard definition in graph theory, which requires the
subgraph induced by J to have a perfect matching. See, for instance, Schrijver (2003, Vol I, p59).

21We provide a polynomial-time method for checking matchability in Appendix C.2.
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erence profile obtained from preference profile R that deems only the assignments involving

left-lobe donations by pairs as individually rational: For all i ∈ I, if Ri = R
a/x
i where its

participation type is a ∈ {d,m} and its willingness type is x ∈ {u,w} then R0
i keeps the same

participation type but assumes that the pair is unwilling to donate a right lobe. Formally,

∀i ∈ I Ri = R
a/x
i =⇒ R0

i ≡ R
a/u
i .

At the initiation of the algorithm, the active reduced compatibility graph is G0 = (I, E0),

where

E0 ≡ EIR[R0] =
{
{i, j} ∈ EIR[R] : t(i, j) = ` and t(j, i) = `

}
.

The active graph is modified through the following two operators as we run the algorithm:

1. Deletions: Left-lobe donation possibilities of pairs are fully utilized by sequentially pro-

cessing them following a fixed topological order and committing to each processed pair one

of its best achievable matches while donating a left lobe. Whenever a pair is committed

to receive one of its best achievable matches in our algorithm, all less-preferred matches

are deleted from the active reduced compatibility graph, and subsequently obtaining a

new active subgraph.

Let G′ = (I, E ′) be the active reduced compatibility graph prior to processing of pair i,

and let J be the set of pairs whose members are committed for an assignment up to this

point. If pair i is deemed matchable in G′ in addition to pairs in J , i.e., A(i|J , G′) 6= ∅,
the deletion operator induces a new reduced compatibility graph G′′ = (I, E ′′) in the

algorithm, where

E ′′ ≡
(
E ′ \ E ′(i)

)
∪
{
{i, j} ∈ E ′(i) : j ∈ B(i|J , G′)

}
.

That is, E ′′ is obtained from E ′ by deleting all matches of i except its best achievable

matches. Instead of fixing a pair’s assignment, we will use deletion to determine the

indifference class of assignments that this pair will eventually be matched. This will help

us to ensure the efficiency of the mechanism.22

2. Transformations: As each pair is processed sequentially, the options for pairs further

ahead in the topological order potentially shrink. If a pair i cannot be matched through

a left-lobe donation, that means, not only its existing left-lobe donation possibilities

22Fixing a pair’s assignment may lead to inefficiency in a priority-based algorithm when pairs can be
indifferent among different assignments. Suppose that there are four pairs with types τ(i1) = (0, 0, 1) −
(1, 1, 0, 1), τ(i2) = (0, 1, 1)− (1, 1, 0, 1), τ(i3) = (1, 1, 0− 0, 1, 1, 1), τ(i4) = (1, 1, 0)− (1, 0, 1, 1), and that each
pair is unwilling. The set of individually rational matches is EIR =

{
{i1, i3}, {i1, i4}, {i2, i3}

}
and it involves

only left-lobe matches. Suppose i1 and i3 are indifferent between their IR assignments. The precedence
digraph is empty so any priority order of pairs is a topological order. Suppose we process the pairs in the
order i1 − i2 − i3 − i4. If we fixed initially i1’s assignment as i3, then we would preclude both i2 and i4 to
be matched later. Instead, we will fix the indifference class of possible assignments of i1 as i3 and i4, and we
will be able to match all four pairs through M =

{
{i1, i4}, {i2, i3}

}
when we process i2 after i1.
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are exhausted, but also any potential left-lobe donation possibilities are also exhausted

by Lemma 1.23 At this point we transform pair i deeming it available for right-lobe

donation, for the first time and until the termination of the algorithm, provided that it

is willing.

Given a preference profile R, let G′ = (I, E ′) be the active graph at this point in our

algorithm when pairs in a set J̃ ⊆ I \ {i} are already transformed to donate their right

lobes. After we transform pair i, the active graph becomes G′′ = (I, E ′′), where

E ′′ ≡ E ′ ∪ EIR[RJ̃ ∪{i}, R
0
−J̃∪{i}](i).

That is, we include all individually rational matches involving pair i donating right lobe

when pairs in J̃ are also in right-lobe donation mode while the other pairs are in left-

lobe donation mode.24 Since E ′′ ⊇ E ′, a transformation potentially enlarges the set of

matches in the active graph.

4.4 Precedence-Induced Adaptive-Priority Mechanism

We are ready to present an iterative algorithm, which can be used to find the outcome of

our proposed Precedence-Induced Adaptive-Priority Mechanism, referred to as fP.

The mechanism we introduce is defined for a given pair (Π`,Πr) of priority orders, where Π`

is a topological order over pairs and Πr is any priority order over pairs. While the priority

order Πr is completely flexible and it can be the same as the topological order Π`, it does

not have to be. We refer to Π` as the left-lobe matching topological order, and to Πr as

the right-lobe matching priority order. For the rest of the section, we fix the left-lobe

matching topological order Π` and the right-lobe matching priority order Πr, and focus on

the uniquely defined mechanism fP.25

For the rest of this section, also fix a liver-exchange problem R ∈ R.

Before stating the formal definition of the algorithm, we next provide an overview of how

it operates using the tools and concepts we have introduced so far. There are two main

steps. In each step, we process pairs sequentially in substeps and determine whether we are

to commit to match them to one of the best assignments they can achieve. We keep track of

these through

• two sequences of committed pair sets, one for left-lobe-committed and one for right-lobe-

23Observe that, processing the pairs following a topological order is key for this last argument to hold.
24A pair in J̃ could potentially donate left lobe to pair i. However, as we process pairs in the topological

order, there will be no pair in j ∈ J such that transformation of i induces a new individually rational match
{i, j} such that i donates right lobe, while j donates left lobe.

25As it will be clear later, the algorithm for a given priority order profile, when executed for a given liver-
exchange problem, will typically find an arbitrary matching from a subset of matchings. We interpret any
matching from this set as an outcome of the induced mechanism fP, as all matchings in this outcome set are
welfare equivalent.
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committed pairs, such that each pair in each set is to be matched by the algorithm to

one of its best achievable assignments either by donating left lobe or right lobe,

• a sequence of transformed willing pair sets, each of which includes pairs that could not

be matched donating left lobe, but can potentially be matched donating right lobe, and

• a sequence of active reduced compatibility graphs each of which includes the matches

that are deemed feasible so far.

Step 1 starts with the active graph that only consists of left-lobe-only individually rational

matches (G0 defined in Section 4.3). At this point, no pair is committed to be matched or

transformed yet. We first use the left-lobe matching topological order Π` to process pairs

sequentially. In each substep, we check whether the next pair in Π` is matchable (by donating

its left lobe) in addition to the previously left-lobe-committed set of pairs in the active graph.

• If it is matchable, we commit to match it by donating its left lobe with one of its best

achievable assignments in the active graph. To keep track of these assignments, we create

a new active graph by deleting all matches of this pair except its best achievable matches

from the latest active graph.

• If it is not matchable, this pair cannot be matched through left lobe donation without

breaking at least one of the commitments to pairs who are processed earlier under the

topological order Π`.
26 Thus, we check whether it is willing to donate a right lobe or not.

– If it is not willing, this pair remains unmatched as all individually rational assignments

of this pair are already committed to other pairs.

– If it is willing, we add it to the set of transformed pairs and induce a new active graph

by adding its all newly formed individually rational matches to the latest active graph.

So far, we committed pairs to be matched by donating their left lobes, if possible. Step 2

concerns only the commitment prospects of transformed pairs in Step 1. We start Step 2 with

the reduced compatibility graph obtained at the end of Step 1 as its starting active graph.

We also have the set of left-lobe committed pairs from Step 1. Using the right-lobe matching

priority order Πr, we process the transformed pairs sequentially. In each substep, we check

whether the next transformed pair in Πr is matchable in the active graph (by donating its

right lobe) in addition to the previously left-lobe-committed and right-lobe-committed sets.

• If it is matchable, we commit to match it by donating a right lobe with one of its best

achievable assignments in the active graph. To keep track of these assignments, we create

a new active graph by deleting all matches of this pair except its best achievable matches

from the latest active graph.

• If it is not matchable, this pair cannot be matched as all individually rational assignments

of this pair are already committed to other pairs.

26This is true as we process pairs in a topological order induced by the precedence digraph: any future
transformed pair will not induce new matches with this pair while it is donating left lobe.
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When Step 2 terminates, we have a final active graph, a set of left-lobe-committed pairs,

and a set of right-lobe-committed pairs. A matching of the active graph that matches all

committed pairs is the outcome of our algorithm.

We are ready to formally present our algorithm:27

Precedence-Induced Adaptive-Priority-Matching Algorithm:

Step 1: Let I = {i1, . . . , iK} be the enumeration of pairs with respect to the

left-lobe matching topological order Π`. Define auxiliary preference profile R0 ∈
R that is obtained from preference profile R and deems only the assignments

involving left-lobe donations by pairs as individually rational: For all i ∈ I, if

Ri = R
a/x
i where its participation type is a ∈ {d,m} and its willingness type is

x ∈ {u,w} then R0
i keeps the same participation type but assumes the pair is

unwilling to donate a right lobe:

∀i ∈ I Ri = R
a/x
i =⇒ R0

i ≡ R
a/u
i .

We inductively construct

1. a sequence of reduced compatibility graphs

G0 = (I, E0), . . . , GK = (I, EK)

such that Ek ⊆ EIR[R] for all k, and

2. two sequences of enlarging pair sets

J0 ⊆ J1 ⊆ . . . ⊆ JK ⊆ I and J̃0 ⊆ J̃1 ⊆ . . . ⊆ J̃K ⊆ I

through substeps of Step 1. We refer to Jk−1 as the set of left-lobe-committed

pairs, J̃k−1 as the set of transformed pairs, and Gk−1 as the active graph at the

beginning of Step 1.(k).

At the initiation, the active reduced compatibility graph is G0 = (I, E0) where

E0 ≡ EIR[R0] =
{
{i, j} ∈ EIR[R] : t(i, j) = ` and t(j, i) = `

}
.

That is, E0 is restricted to individually rational matches in which each donor

donates a left lobe. Also define

J0 ≡ ∅ and J̃0 ≡ ∅.
27Some of the readers may prefer to go through Example 4 at the end of this section, as well as the more

detailed Example A-3 in Appendix D, prior to going through the formal definition of the algorithm.
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Step 1’s substeps proceed inductively:

Step 1.(k): Consider pair ik, the k’th highest-priority pair under Π`.

Sets Jk−1, J̃k−1, and the reduced compatibility graph Gk−1 = (I, Ek−1)
are defined at Step 1.(k − 1).

• If Jk−1 ∪ {ik} is matchable in Gk−1, then let

Jk ≡ Jk−1 ∪ {ik}, J̃k ≡ J̃k−1, and Gk = (I, Ek) where

Ek ≡
[
Ek−1 \ Ek−1(ik)

]
∪
{
{ik, j} : j ∈ B(ik|Jk−1, Gk−1)

}
.

That is, Ek is obtained from Ek−1 by deleting all matches involving

pair ik except its best achievable matches (when all pairs in Jk−1
can also be matched).

• Otherwise, let

Jk ≡ Jk−1 and

* if ik is not willing, then let

J̃k ≡ J̃k−1 and Gk = (I, Ek) ≡ Gk−1;

* if ik is willing, then let

J̃k ≡ J̃k−1 ∪ {ik} and Gk = (I, Ek) where

Ek ≡ Ek−1 ∪ EIR[RJ̃k , R
0
−J̃k

](ik).

That is, Ek is obtained by transforming pair ik in addition to

the previously transformed pairs while keeping other pairs as

left-lobe donors and including newly formed individual rational

matches to the active graph’s set of edges.

Proceed with Step 1.(k + 1).

Step 1 terminates at substep K, where K = |I| is the number of pairs. This step

determines:

1. the reduced compatibility graph GK = (I, EK), where one of its matchings is

to be selected as the eventual outcome of the algorithm,

2. the finalized set of left-lobe-committed pairs JK , whose members will each

be matched by donating a left lobe, and their eventual indifference class of

assignments with one of which they will be matched,

3. the set of pairs I \ [JK ∪ J̃K ], whose members –unwilling to donate a right

lobe – definitely remain unmatched, and
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4. the finalized set of transformed pairs J̃K , whose members may be matched

by donating right lobe or remain unmatched.

We proceed with Step 2 that determines which pairs in J̃K will be matched

donating right lobe and their eventual indifference class of assignments (with one

of which they will be matched), along with the final outcome of the algorithm.

Step 2: Inductively, we continue with the pairs in J̃K , whose members can be

potentially matched –albeit through right-lobe donation– in addition to members

of JK (who are already committed to be matched). Let J̃K = {i∗1, . . . , i∗N} be the

enumeration of those pairs with respect to the right-lobe matching priority order

Πr. We construct

1. a sequence of shrinking reduced compatibility graphs

G∗0 = (I, E∗0), . . . , G∗N = (I, E∗N)

such that E∗N ⊆ . . . ⊆ E∗0 , and

2. a sequence of enlarging pair sets

J ∗0 ⊆ . . . ⊆ J ∗N .

We refer to J ∗n−1 as the set of right-lobe-committed pairs and G∗n−1 as the

active graph at the beginning of Step 2.(n).

At the initiation of Step 2, set

J ∗0 ≡ ∅ and G∗0 = (I, E∗0) ≡ GK .

Step 2.(n): Consider i∗n, the n’th highest-priority pair in J̃K according

to the right-lobe matching priority order Πr. Pair set J ∗n−1 and reduced

compatibility graph G∗n−1 = (I, E∗n−1) are constructed at Step 2.(n−1).

• If JK ∪ J ∗n−1 ∪ {i∗n} is matchable in G∗n−1, then let

J ∗n ≡ J ∗n−1 ∪ {i∗n} and G∗n = (I, E∗n) where

E∗n ≡
[
E∗n−1 \ E∗n−1(i∗n)

]
∪
{
{i∗n, j} : j ∈ B(i∗n|JK ∪ J ∗n−1, G∗n−1)

}
.

That is, E∗n is obtained from E∗n−1 by deleting the matches involving

pair i∗n, except its best achievable matches (when all pairs in JK ∪
J ∗n−1 are also matched).

• Otherwise, let

J ∗n ≡ J ∗n−1 and G∗n = (I, E∗n) ≡ G∗n−1.
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Proceed with Step 2.(n+ 1).

When Step 2 terminates at substep N = |J̃K |, the mechanism picks, as its out-

come, a matching of G∗N that matches all pairs in JK and J ∗N .

As we prove in Lemma 3 in Section 5, each pair is indifferent among all matchings of G∗N
that match all pairs in JK and J ∗N . Thus, the welfare achieved by the mechanism is uniquely

defined although the matching it chooses is not uniquely defined.28

We illustrate how the algorithm works on the simple problem in Example 1.

Example 4 Consider the liver exchange problem in Example 1. In Example 3, we showed

that the unique topological order for its exchange pool is

Π` = i3 − i2 − i1.

We fix this as the left-lobe matching topological order. And suppose right-lobe matching

priority order is

Πr = i1 − i2 − i3.

We illustrate the steps of the algorithm for (Π`,Πr):

Step 1. Each pair’s auxiliary preferences are defined as follows: For each i ∈ I, as

Ri = R
m/w
i , we set

R0
i ≡ R

m/u
i .

The initial active reduced compatibility has no edges in it as all matches in Figure 2 involves

a right-lobe transplant: E0 ≡ EIR[R0] = ∅ and G0 = (I, E0). We also initialize J0 ≡ ∅ and

J̃0 ≡ ∅.

Step 1.(1): J0 ∪ {i3} = {i3} is not matchable in G0, which is the empty graph. Thus,

J1 ≡ J0 = ∅, the set of left-lobe-committed pairs does not change. However, pair i3 is willing.

Therefore, we transform it and obtain J̃1 ≡ J̃0 ∪ {i3} = {i3}. We add to E0 its only newly

formed individually rational match in which i2 donates a left lobe while i3 donates a right

lobe:

E1 ≡ E0 ∪
{
{i3, i2}

}
=
{
{i3, i2}

}
and G1 = (I, E1).

Step 1.(2): J1 ∪ {i2} = {i2} is matchable in G1: M =
{
{i2, i3}

}
is the unique matching

that matches i2. Therefore, we commit it to be matched while donating a left lobe: J2 ≡
J1∪{i2} = {i2}. It is not transformed; therefore, J̃2 = J̃1. Pair i2 has one achievable match

in G1. Therefore, we do not change the active graph: G2 ≡ G1.

28We provide a polynomial-time method for how to find such a matching in Appendix C.2.
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Step 1.(3): J2 ∪ {i1} = {i2, i1} is not matchable in G2: M =
{
{i2, i3}

}
is the unique one

that matches the only pair in J2, i2; but it leaves i1 unmatched. Therefore, J3 ≡ J2 = {i2}.
Pair i1 is willing and thus, it is transformed; therefore, J̃3 ≡ J̃2 ∪ {i1} = {i1, i3}. However,

this transoformation does not induce new individually rational matches: G3 ≡ G3.

Step 2. We initialize the right-lobe-committed set to J ∗0 ≡ ∅, the active graph to G∗0 ≡
G3 = G1. The right-lobe matching priority order Πr orders the transformed pairs as Πr =

i1 − i3.

Step 2.(1): J3 ∪ J ∗0 ∪ {i1} = {i2, i1} is not matchable in G∗0 for the same reason as in

Step 1.(3). Pair i1 will stay unmatched: J ∗1 ≡ J ∗0 = ∅ and G∗1 ≡ G∗0.

Step 2.(2): J3∪J ∗0 ∪{i3} = {i2, i3} is matchable in G∗1: M =
{
{i2, i3}

}
is the unique such

matching. Thus, we commit to match pair i3 while donating a right lobe: J ∗2 ≡ J ∗1 ∪ {i3} =

{i3}. As there is only one achievable match in G∗1 for i3, we do not change active graph:

G∗2 ≡ G∗1.

The outcome of the mechanism is a matching of G∗2 that matches J3 ∪ J ∗2 = {i2, i3}.
There is one such matching:

fP[R] ≡
{
{i2, i3}

}
.

The algorithm prevents the possible manipulation by pair i2 under an arbitrary priority

order as illustrated in Example 1, since it processes i2 before i1 using the concept of topological

order of the precedence digraph. Thus, i2 is never transformed, and hence, it does not need

to misrepresent its willing preferences.

We also illustrate how the algorithm works and how the detailed constructions in substeps

are used with a more involved example in Appendix D.

5 Results

The main result of our paper is as follows:

Theorem 1 A precedence-induced adaptive-priority mechanism is individually rational, Pareto

efficient, and incentive compatible.

To prove Theorem 1, we rely on some additional notation and preliminary results pre-

sented below.

We first state the properties of the reduced compatibility graphs, the resulting match-

ings, and the sets of pairs constructed through the steps of our algorithm. We define the

following sets of matchings, which can be interpreted as the outcomes of Step 1.(k) for any
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k ∈ {1, . . . , K} and Step 2.(n) for any n ∈ {1, . . . , N} of the mechanism. We analyze the

properties of these sets of matchings in Lemmas 2 and 3 below.

Define

Mk ≡ {M ∈M[Gk] : M(j) 6= ∅ ∀j ∈ Jk}

as the subset of matchings of Gk, the active graph at the end of Step 1.(k), such that each

matching in this set matches each pair in Jk, which is the set of committed pairs up to the

end of Step 1.(k).

Define

M∗
n ≡ {M ∈M[G∗n] : M(j) 6= ∅ ∀j ∈ JK ∪ J ∗n }

as the subset of matchings of G∗n, the active graph of the algorithm at the end of Step

2.(n), such that each matching in this set matches each pair in JK ∪ J ∗n , which is the set of

committed pairs up to the end of Step 2.(n). Thus, any matching in M∗
N can be the outcome

of the precedence-induced adaptive-priority mechanism.

We state the properties of matchings in MK below in Lemma 2.

Lemma 2 (Properties of Constructs in Step 1) Consider the sequences of reduced com-

patibility graphs {Gk}Kk=1 and pair sets {Jk, J̃k}Kk=1 constructed through the substeps of Step

1 of the precedence-induced adaptive-priority-matching algorithm.

1. Set of pairs JK, i.e., the set of pairs that are committed to be matched in Step 1, is indeed

matchable in GK, the active graph at the end of Step 1.

2. MK 6= ∅, and, for any matching M ∈MK,

(a) for all j ∈ I \ J̃K and all M ′ ∈ MK, M(j) Ij M
′(j); that is, any pair that is not

transformed in Step 1 is indifferent between any two matchings in MK,

(b) for all j ∈ JK, M(j) ∈ E `(j); that is, any pair that is committed to be matched in

Step 1, is matched by donating its left lobe in M ,

(c) for all j ∈ J̃K, M(j) 6∈ E `(j); that is, any pair that is transformed in Step 1 is not

matched by donating its left lobe in M ,

(d) for all j ∈ I \ [JK ∪ J̃K ], M(j) = ∅; that is any pair that is neither committed to be

matched nor transformed in Step 1 remains unmatched in M ,

(e) for all ik ∈ JK, M(ik) ∈ B(ik|Jk−1, GK); moreover, M(ik) Iik j for all j ∈ B(ik|Jk−1, Gk);

that is, each committed pair ik is matched in M to one of its best available assign-

ments in GK when all pairs committed prior to ik are also matched;

moreover, in M , ik’s assignment is indifferent to one of its best achievable assign-

ments in Gk, the active graph at the end of Step 1.(k), when all pairs committed prior

to ik are also matched.29

We state the properties of matchings in M∗
N below in Lemma 3.

29The proofs of this lemma and other results in this section are in Appendix B.
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Lemma 3 (Properties of Constructs in Step 2) Consider the sequences of reduced com-

patibility graphs {G∗n}Nn=1 and pair sets {J ∗n }Nn=1 constructed through the substeps of Step 2

of the precedence-induced adaptive-priority-matching algorithm.

1. M∗
N ⊆MK and J ∗N ⊆ J̃K.

2. Set of pairs JK ∪ J ∗N , the set of pairs committed in Steps 1 and 2, is matchable in G∗N ,

the final active graph of the algorithm.

3. M∗
N 6= ∅, and, for any matching M ∈M∗

N ,

(a) for all j ∈ I and all M ′ ∈M∗
N , M(j) Ij M

′(j); that is any pair is indifferent between

any two matchings of set M∗
N ,

(b) for all j ∈ JK, M(j) ∈ E `(j); that is, all pairs committed in Step 1 are matched by

donating left lobe in M ,

(c) for all j ∈ J ∗N , M(j) ∈ Er(j); that is, all pairs committed in Step 2 are matched by

donating right lobe in M ,

(d) for all j ∈ I\[JK∪J ∗N ], M(j) = ∅; that is, all non-committed pairs remain unmatched

in M ,

(e) for all ik ∈ JK, M(ik) ∈ B(ik|Jk−1, G∗N); that is, each committed pair ik in Step 1 is

matched in M to one of its best available assignments in G∗N when all pairs committed

prior to ik are also matched, and

(f) for all i∗n ∈ J ∗N , M(i∗n) ∈ B(i∗n|JK ∪ J ∗n−1, G∗N); moreover, M(i∗n) ∈ B(i∗n|JK ∪
J ∗n−1, G∗n); that is, each committed pair i∗n in Step 2 is matched in M to one of its

best available assignments in G∗N and also in G∗n when all pairs committed prior to

i∗n in Steps 1 and 2 are also matched.

We state the following corollary to Lemma 3 regarding our mechanism:

Corollary 1 Fix a liver-exchange problem, a left-lobe matching topological order, and a right-

lobe matching priority order. For any given pair, the pair receives the same welfare under all

possible outcome matchings of the precedence-induced adaptive priority mechanism.

Parts of these two lemmas will also be used in proving our main result, Theorem 1 given

at the beginning of the section.

5.1 Transplant Maximization and Incentive Compatibility

It is well known that when all patients are indifferent among compatible grafts and right-

lobe donation is not allowed, every Pareto efficient matching maximizes the number of trans-

plants (see Korte and Vygen, 2011, Roth, Sönmez, and Ünver, 2005, and Sönmez and Ünver,

2014).

When right-lobe donation becomes feasible, this equivalence no longer holds. Moreover,

although our proposed precedence-induced adaptive-priority mechanism is Pareto efficient,
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it may not maximize the number of transplants even when there are only two sizes and all

patients are indifferent among all compatible grafts.

The example below shows that one has to sacrifice incentive compatibility in order to

maximize the number of transplants, even when patients are indifferent among all compatible

grafts. Indeed the same example also shows that, one has to sacrifice incentive compatibility

in order to maximize the number of the safer left-lobe transplants as well.

Example 5 Suppose there are two sizes, small and large, denoted as S = {0, 1}. Consider

a liver-exchange pool with I = {i1, i2, i3, i4}. The pair types are given as follows:

τP (i1) = (1, 0, 1) τD(i1) = (0, 1, 1, 1),

τP (i2) = τP (i4) = (0, 1, 1) τD(i2) = τD(i4) = (1, 0, 0, 1)

τP (i3) = (1, 0, 0) τD(i3) = (0, 1, 1, 1).

Suppose all pairs are indifferent among all compatible grafts under the received-graft prefer-

ence profile %. Suppose also that, pairs i2 and i4 are both willing. The individually rational

compatibility graph of this problem is given in Figure 5.

i1
101-0111

i2
011-1001 w

i3
100-0111

r

r

i4
011-1001 w

i1
101 − 0111

i2
100 − 0111

i4
011 − 1001 w

r

ℓ

r

ℓ

i3
011 − 1001 w

ℓ

ℓℓ

ℓ
ℓ

ℓ

ℓ ℓ
ℓ

ℓ

Figure 5: The individually rational compatibility graph for Example 5. The willing types are
denoted by letter w following their types. The left- and right-lobe donations are denoted by letters
` and r. There are four individually rational exchanges.

Any left-lobe-donation-maximizing or total-transplant-maximizing matching (two of which

can be obtained by swapping i2 and i4 with each other) generates two exchanges. Consider

these two matchings:

M =
{
{i1, i2}, {i3, i4}

}
& M ′ =

{
{i1, i4}, {i2, i3}

}
.

Observe that t(i2, i1) = t(i4, i1) = r while t(i2, i3) = t(i4, i3) = `. Any (probabilistic) mech-

anism that chooses a matching with the maximum number of transplants or the maximum
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number of left-lobe transplants chooses at least one of these two matchings in its support.

Without loss of generality, suppose M is that matching. Then i2 has an incentive to an-

nounce its right-lobe donation willingness type as unwilling by revealing R′i2 = R
m/u
i2

, as

the mechanism will choose M ′, which is the unique left-lobe-donation- and total-transplant-

maximizing matching in this case, with probability 1. Hence, there is no incentive-compatible

mechanism that maximizes the total number of transplants or left-lobe transplants.

Example 5 also serves as a proof for the following impossibility result:

Proposition 1 There is no individually rational and incentive-compatible mechanism that

maximizes the number of transplants or the number of left-lobe transplants even when all

patients are indifferent among compatible grafts.

Establishing such an impossibility is straightforward when received-graft preferences ad-

mit strict preferences, thus we skip it.

It is instructive to find outcome of the precedence-adjusted priority mechanism for Ex-

ample 5, with particular emphasis on how it prevents manipulation:

Example 6 The precedence digraph over the pairs for the problem in Example 5 is (I, D)

with directed edge set

D =
{

(i2, i1), (i4, i1)
}
.

Hence, in all topological orders of this digraph, i2 and i4 are ordered before i1, but otherwise

the ordering is arbitrary. Recall that i2 and i4 are of the same pair type.

Suppose we fix a topological order Π` that orders i2 before i4 and i4 before i1 as the left-

lobe matching topological order and an arbitrary right-lobe matching priority order Πr. The

outcome of our mechanism is

fP[R] =
{
{i2, i3}, {i4, i1}

}
,

as i2 is ordered before i4 it will get the unique left-lobe matching opportunity with i3, and as

i4 is willing, it will be matched with i1 by donating right lobe.

On the other hand, if i4 announced its right-lobe donation willingness type as unwilling,

i.e.,

R′i4 = R
m/u
i

then the outcome of the mechanism would be

fP[R′i4 , R−i4 ] =
{
{i2, i3}

}
.

Thus, i4 would remain unmatched. Instead of finding the unique maximum matching for the
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problem (R′i4 , R−i4)

M =
{
{i1, i2}, {i3, i4}

}
,

our mechanism matches two pairs Pareto efficiently. This ensures our mechanism is incentive

compatible for this problem.

6 Simulations

In this section, we report the results of computer simulations to determine the potential

welfare gains from liver exchange. We use South Korean aggregate statistics in our simula-

tions, since this country leads the world both in living-donor liver transplants and in liver

exchange.

Calibration Statistics for Simulations from South Korean Population

Live-Donation Recipients Live Donors Height (cm)

Female 1492 (34.55%) 1149 (26.61%) Mean: 157.40 Std Dev: 5.99
Male 2826 (64.45%) 3169 (73.39%) Mean: 170.70 Std Dev: 6.40
Total 4318 (100.0%) 4318 (100.0%)

Blood-Type Distribution

O A B AB Total
37% 33% 21% 9% 100%

Table 1: Calibration statistics from South Korea for liver-exchange simulations. Blood-type distri-
bution is obtained from http://bloodtypes.jigsy.com/East_Asia-bloodtypes on 04/10/2016.
Mean and standard deviation for South Korean adult height distribution are obtained from the
Korean Agency for Technology and Standards (KATS) website http://sizekorea.kats.go.kr on
04/10/2016. The transplant data is obtained from the Korean Network for Organ Sharing (KONOS)
2014 Annual Report, retrieved from http://www.konos.go.kr/konosis/index.jsp on 04/10/2016
and contains the years 2010–2014.

Table 1 summarizes the calibration parameters used in our simulations. Each patient

is assumed to be paired with a donor. Blood type, gender, and height characteristics for

patients and their donors are determined independently and randomly.30

A donor and patient are deemed left-lobe compatible if they are blood-type compatible

and the donor’s left lobe volume is at least 40% of the total liver volume of the patient. A

donor and patient are deemed right-lobe-only compatible if they are blood-type compatible,

30We use the following weight determination formula as a function of height (also see Ergin et al. 2017):
w = a hb, where w is weight in kilograms, h is height in meters, and constants a and b are set as a = 26.58, b =
1.92 for males and a = 32.79, b = 1.45 for females (Diverse Populations Collaborative Group, 2005). The
body surface area (BSA in m2) of an individual is determined through the Mostellar formula given in Um

et al. (2015) as BSA =
√
h w
6 , and the liver volume (lv in ml) of Korean adults is determined through the

estimated formula in Um et al. (2015) as lv = 893.485 BSA− 439.169. Each patient and donor have a height
drawn independently from the truncated normal distribution using the mean and std. dev. reported in this
table with the support [mean - 3 std. dev., mean + 3 std. dev.]. We assume that the left lobe of each donor
is 35% of all his liver, as this is reported as the mean of the left-lobe volume in Korea (Um et al. 2015).
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the donor’s right-lobe volume is at least 40% of the total liver volume of the patient, although

the donor’s left lobe volume is less than 40% of the total liver volume of the patient.

We generate K = 50, 100, and 250 patient-donor pairs in three sets of simulations. Since

we do not have empirical statistics on the willingness of donors for right-lobe donation, we

consider 6 scenarios for each population size in which on average 0, 20, 40, 60, 80, and 100% of

all pairs are willing. For each willingness rate, we randomly determine each pair’s willingness.

We make the following two assumptions for preferences of pairs, as we do not have a

better measure of more nuanced preferences over liver exchanges:

1. All pairs are direct-transplant biased. This implies all left-lobe compatible pairs prefer

a direct transplant to any type of exchange and all right-lobe compatible pairs prefer a

direct transplant to any exchange in which they donate right lobe. Incompatible pairs

are not affected by this assumption.

2. All pairs are indifferent among all compatible received-grafts in their received-graph pref-

erences %.

These two assumptions are standard in the kidney exchange literature, as well as most of

its real-life applications. In most kidney exchange applications, pairs have direct-transplant

bias as they may not want to wait for an exchange. Moreover, transplant doctors mostly

care about the compatibility of the received graft as the first-order coarse received-graph

preference relation. Thus, we expect these also to be the case in liver exchange, especially in

the short run until more data becomes available regarding exchanges.

We consider the following four treatments:

1. No exchange. Left-lobe-compatible pairs and right-lobe-only-compatible willing pairs

participate in direct transplants.

2. RSÜ priority mechanism for left-lobe exchanges. Left-lobe-compatible pairs participate

exclusively in direct transplants. Restricting the compatibility graph to left-lobe-only

exchanges in the remaining problem, the outcome of the Roth, Sönmez, and Ünver (2005)

(RSÜ) priority mechanism, mainly introduced for kidney exchange, is determined for an

arbitrary priority order. Right-lobe-only-compatible willing pairs participate in direct

transplants only if they cannot be matched through left-lobe only exchanges.

3. Proposed Pareto-efficient, individually rational, and incentive-compatible mechanism. An

outcome of our precedence-induced adaptive-priority mechanism is determined for arbi-

trary topological and priority orders.

4. A maximum individually rational matching under full information. Assuming that the

willingness profile is known, we find a maximum individually rational matching as fol-

lows: We first deem each left-lobe compatible pair only compatible with themselves. For

willing right-lobe-only compatible pairs, in addition to their left-lobe transplant options,

we only make direct (right-lobe) transplant a feasible option. We transform all willing in-
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compatible pairs at the initiation, deeming them available for right-lobe transplantation

right away. Then, we find a maximum matching of the induced compatibility graph.31

The second treatment depicts a baseline scenario for measuring the benefits from liver ex-

change using off-the-shelf methods introduced for kidney exchange. Thus, it utilizes ex-

changes only for left-lobe transplants. Although this procedure is individually rational and

incentive compatible as a mechanism, it is not Pareto efficient.

The fourth treatment depicts a hypothetical situation assuming willingness profiles of

the pairs are known. We use this as a benchmark when the goal is to maximize number of

transplants. This procedure is not incentive compatible as a mechanism.

The results of the simulations are given in Table 2 and Figure 6.32 About 12.5% of all pairs

are left-lobe compatible and their patients receive a direct left-lobe transplant. About 45.5%

of all pairs are right-lobe-only compatible, and up to this percentage of the patients receive

a direct right-lobe transplant as a linear, increasing function of the willingness rate (see the

no exchange treatment in the figure). Therefore, in the absence of liver exchange, 12.5%

to 58.0% of patients with living donors receive a direct transplant as a linear, increasing

function of the willingness rate. Our mechanism, on the other hand, matches from 18%

to 78% of all pairs, in a seemingly concave, increasing function of the willingness rate for

K = 100 (see proposed PE&IR&IC treatment in the figure).33 Thus, for a population size

of K = 100, the percentage-wise increase in the number of transplants due to exchange is in

the range of 44% to 34%, higher for the lower values of the willingness rate.34 Our proposed

mechanism not only increases the number of living-donor liver transplants, but also increases

the reliance on the lower-risk left-lobe liver transplantation in the spirit of the central tenet

of the hippocratic oath “first do no harm.” For example, when all pairs are willing, the share

of left-lobe transplants increases from 21.5% to 31.1%. In general for any willingness rate,

the rate of increase in left-lobe transplants is higher than the rate of increase in right-lobe

31We implement the Sönmez and Ünver (2014) priority mechanism in this case to find a maximum matching
from an arbitrary priority order. This mechanism is maximum when the compatibility graph includes two-way
exchanges and direct transplants.

32We caution the readers that we do not consider the possible genetic relationship between a paired donor
and patient and assume that their blood types and sizes are independently distributed. Also pairs consisting
of spouses may have positive correlation for their sizes although their blood types are unrelated. This
independence assumption works in favor of our simulated gains from exchange. Also we only consider adult
patients. Living-donor transplants from parents to their children are in non-negligible numbers in countries
such as the US. The left-lobe compatibility instances within such pairs should be more frequent than within
baseline pairs. The exclusion of such pairs works in favor of our simulated gains from exchange as well. On
the other hand, we used the recipient percentages to determine the gender of donors and patients. Females
are in general smaller than males. This data has selection bias as probably we observe more size-compatible
pairs than the underlying entry population. This effect works against our exchange simulations.

33This concavity is caused by the initial fast increase in the scope of exchange when right-lobe donation
becomes feasible for lower willingness fractions. For example, for w-fraction equal to 0, the exchange’s
contribution is rather low only an additional 10% of pairs are matched over no exchange.

34The increase in the number of transplants (rather than the percentage-wise increase compared to no
exchange scenario) is higher for higher willingness rates.
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Figure 6: Simulation averages
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No Exchange RSÜ Priority Proposed PE&IR&IC A Maximum IR Matching
Mechanism Mechanism under Full Information

Pop. w Transplants Transplants Transplants Transplants
Size K Fraction Left L. Right L. Total Left L. Right L. Total Left L. Right L. Total Left L. Right L. Total

0 6.204 0 6.204 8.122 0 8.122 8.122 0 8.122 8.122 0 8.122
(2.280) (0.000) (2.280) (2.831) (0.000) (2.831) (2.831) (0.000) (2.831) (2.831) (0.000) (2.831)

0.2 6.204 4.529 10.733 8.12 4.439 12.559 9.272 5.649 14.921 9.232 5.885 15.117
(2.280) (2.064) (2.912) (2.826) (2.050) (3.305) (2.869) (2.270) (3.609) (2.855) (2.313) (3.694)

0.4 6.204 9.081 15.285 8.12 8.881 17.001 10.164 11.059 21.223 10.074 11.616 21.69
50 (2.280) (2.810) (3.330) (2.826) (2.775) (3.644) (2.920) (2.899) (3.966) (2.895) (2.993) (4.139)

0.6 6.204 13.665 19.869 8.122 13.318 21.44 10.904 16.103 27.007 10.715 16.922 27.637
(2.280) (3.179) (3.491) (2.831) (3.150) (3.756) (2.923) (3.211) (3.945) (2.887) (3.296) (4.096)

0.8 6.204 18.301 24.505 8.122 17.808 25.93 11.589 20.963 32.552 11.224 21.932 33.156
(2.280) (3.496) (3.581) (2.831) (3.489) (3.766) (2.931) (3.476) (3.825) (2.868) (3.542) (3.924)

1 6.204 22.87 29.074 8.12 22.239 30.359 12.101 25.507 37.608 11.481 26.465 37.946
(2.280) (3.624) (3.507) (2.832) (3.671) (3.607) (2.940) (3.614) (3.558) (2.833) (3.695) (3.630)

0 12.497 0 12.497 17.995 0 17.995 17.995 0 17.995 17.995 0 17.995
(3.367) (0.000) (3.367) (4.526) (0.000) (4.526) (4.526) (0.000) (4.526) (4.526) (0.000) (4.526)

0.2 12.497 9.097 21.594 17.995 8.839 26.834 20.593 11.754 32.347 20.484 12.56 33.044
(3.367) (2.931) (4.255) (4.526) (2.909) (5.107) (4.586) (3.263) (5.544) (4.582) (3.401) (5.752)

0.4 12.497 18.196 30.693 17.991 17.641 35.632 22.594 22.671 45.265 22.329 24.5 46.829
100 (3.367) (3.928) (4.605) (4.520) (3.865) (5.298) (4.548) (4.079) (5.725) (4.514) (4.310) (6.082)

0.6 12.497 27.277 39.774 17.989 26.378 44.367 24.292 32.679 56.971 23.667 35.318 58.985
(3.367) (4.442) (4.814) (4.524) (4.412) (5.336) (4.545) (4.479) (5.595) (4.380) (4.761) (5.944)

0.8 12.497 36.402 48.899 17.989 35.106 53.095 25.738 42.111 67.849 24.658 44.937 69.595
(3.367) (4.884) (5.032) (4.524) (4.935) (5.323) (4.526) (4.895) (5.389) (4.318) (4.999) (5.572)

1 12.497 45.561 58.058 17.971 43.806 61.777 26.945 50.897 77.842 25.006 53.629 78.635
(3.367) (5.186) (5.062) (4.513) (5.306) (5.234) (4.514) (5.138) (5.243) (4.229) (5.196) (5.255)

0 31.031 0 31.031 50.683 0 50.683 50.683 0 50.683 50.683 0 50.683
(5.236) (0.000) (5.236) (7.681) (0.000) (7.681) (7.681) (0.000) (7.681) (7.681) (0.000) (7.681)

0.2 31.031 22.895 53.926 50.683 22.109 72.792 57.889 30.228 88.117 57.354 33.686 91.04
(5.236) (4.746) (6.572) (7.681) (4.692) (8.329) (7.820) (5.175) (9.060) (7.661) (5.597) (9.579)

0.4 31.031 45.5 76.531 50.679 43.81 94.489 63.368 57.189 120.557 62.138 64.615 126.753
250 (5.236) (6.355) (7.263) (7.677) (6.280) (8.592) (7.819) (6.488) (9.052) (7.501) (6.963) (9.827)

0.6 31.031 68.387 99.418 50.659 65.528 116.187 67.925 81.993 149.918 65.457 91.913 157.37
(5.236) (7.287) (7.639) (7.673) (7.329) (8.502) (7.797) (7.272) (8.508) (7.411) (7.730) (9.107)

0.8 31.031 91.294 122.325 50.643 86.973 137.616 71.718 104.914 176.632 67.178 115.387 182.565
(5.236) (7.870) (7.777) (7.668) (8.097) (8.275) (7.765) (7.838) (8.262) (7.139) (8.105) (8.449)

1 31.031 114.084 145.115 50.613 107.917 158.53 74.598 126.228 200.826 67.291 135.859 203.15
(5.236) (8.290) (7.744) (7.654) (8.660) (7.879) (7.677) (8.480) (7.759) (6.888) (8.391) (7.726)

Table 2: Simulation results for population sizes K = 50, 100, 250 and willingness (w) rates 0,
0.2, 0.4, 0.6, 0.8, 1. Standard deviations of the populations for the total number of transplants are
reported below the averages in parentheses for 1000 simulations. For the standard errors of the
averages all these standard errors need to be divided by

√
1000 ≈ 31.62.

transplants.35

The baseline off-the-shelf RSÜ priority treatment matches more patients than no ex-

change, and the difference slightly decreases as willingness rate increases. However, when

compared to our mechanism, it results in substantially fewer transplants whenever right-lobe

transplantation is a viable option, i.e., w-fraction is positive. The percentage-wise increase

35Even under the most conservative predictions, our simulations also show that potential gains from liver
exchange has not been fully realized in South Korea, especially those due to size incompatibility. ASAM
Medical Center, the leading living-donor liver transplantation center in the world, reports that between
2003 and 2011 only 26 patients were transplanted through exchange, which is only 1.2% of all living-donor
transplants conducted in the center (see Jung et al., 2014). Moreover, they note that only 4 of these patients
participated in exchange for size incompatibility reasons, while the rest participated in exchange because of
blood-type incompatibility.
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in the number of transplants due to the availability of our mechanism instead of the RSÜ

priority mechanism is in the range of 20.5% to 28.4% for K = 100 when right-lobe transplant

option is viable, and more than 26% when w-fraction is 0.4 or more.

When compared to the maximum IR matching treatment, our mechanism does fairly well

in terms of the numbers of transplants, despite the favorable treatment received by the for-

mer mechanism due to the full information assumption on willingness to donate a right lobe.

Unlike our proposed mechanism, this mechanism is not incentive compatible, and hence it’s

outcome is best interpreted as a hypothetical maximum. Indeed, the number of left-lobe

transplants are higher under our proposed mechanism than this hypothetical maximum.36

Since the total number of transplants has to be weakly higher under the hypothetical maxi-

mum, our proposed mechanism yields fewer right-lobe transplants. As the worst case, when

K = 250, the total number of transplants change between 100% (when w-fraction is 0) to

95.1% (when w-fraction is 0.4) and then back to 98.9% (when w-fraction is 1) of those of the

hypothetical maximum IR matching. These ratios, while always less than 100% by definition,

they are more favorable for our proposed mechanism when the population size is smaller with

K = 50 and K = 100.

While the total number of transplants is higher under the maximum IR matching treat-

ment than our proposed mechanism, the total number of transplants does not necessarily

represent the best metric for social welfare. The double equipoise is a widely accepted con-

cept in evaluating the balance between donor risk and recipient benefit in living donor liver

transplantation, and according to this theory it should be performed only if the donor risk

is justified by the acceptable outcome for the recipient. Based on this theory, Roll et al.

(2013) propose the metric of recipient lives saved at 5 years per donor death to evaluate var-

ious liver transplantation policies. For a population size of K = 100 and willingness rate of

100%, the expected number of left lobe transplants under our proposed mechanism is more

than 2 units higher than under the maximum IR matching treatment, whereas the expected

number of right lobe transplants is less than 3 units lower. Therefore, given the five-fold

donor-mortality risk under the right-lobe transplantation, our proposed mechanism performs

significantly better than the maximum IR matching treatment based on this performance

metric proposed in liver transplantation literature.

7 Conclusion

We introduced a liver-exchange model where the donor of each pair can donate either the

smaller and safer-to-donate left liver lobe or the larger and riskier-to-donate right liver lobe.

While liver exchange is inspired by the increasingly widespread kidney exchange, analytically

it is a more challenging problem due to its dual-donation possibility. On the one hand, right-

36We choose one arbitrary full-information priority matching in this graph, and we do not aim to minimize
the number of right-lobe transplants among all possible priority matchings of the graph, as there may be
multiple priority matchings that match the same set of pairs in the induced compatibility graph.

45



lobe donation expands the set of feasible exchanges, increasing the number of patients who

can receive a transplant. On the other hand, it is a considerably higher-risk procedure for

the donor, thereby possibly discouraging some of the donors from this option. And since

some donors will be willing to donate their left lobes but not their right lobes, the liver-

exchange problem harbors a novel incentive compatibility consideration that is not present

in kidney exchange. Exploiting the acyclicity of a certain directed graph among pairs which

can participate in exchange both through left-lobe donation and right-lobe donation, we

introduced a novel exchange mechanism that is Pareto efficient and incentive compatible.

The welfare gains from adopting our mechanism are considerable, and depending on the

ratio of donors who are willing to donate a right lobe, it increases the number of living-donor

liver transplants by 34–44%.

Recently Mishra et al. (2018) advocated for organized liver exchange in the US, empha-

sizing the choice of a matching algorithm as one of the most difficult issues to be resolved.

We believe our proposed mechanism is a viable solution for this important problem.

Appendix A Mathematical Preliminaries

In this section, we will state some definitions and a result from graph theory that will be

used in subsequent proofs.

A tuple G = (V , E) is a graph if V is a nonempty set such that ∅ /∈ V and E ⊆
{
{x, y} :

x, y ∈ V
}

. The elements of V are called vertices. The elements of E are called edges.

Note that in the definition of a graph, we are allowing for loops, i.e., edges {x, y} such

that x = y.37

A matching in a graph G = (V , E) is a subset M ⊆ E of pairwise disjoint edges, i.e.,

ε, ε′ ∈M such that ε∩ ε′ 6= ∅ =⇒ ε = ε′. Given a matching M in G, we will abuse notation

and also define the function M : V → V ∪ {∅} by:

M(x) =

{
y if there exists y ∈ V such that {x, y} ∈M
∅ otherwise

for all x ∈ V . We call M(x) the assignment of x in M . We will say that a subset W ⊆ V
is matchable in G, if there is a matching M in G such that M(x) 6= ∅ for all x ∈ W .

In a graph, the vertices corresponding to each edge ε = {x, y} are unordered. We will

also need the notion of a directed graph where the order of the vertices does matter.

37In some texts, a simple undirected graph with loops is what we call a graph here. See for example Korte
and Vygen (2011, p13-14).
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A tuple G = (V , E) is a directed graph (digraph) if V is a nonempty set and E ⊆
{(x, y) ∈ V × V : x 6= y}. When the digraph is understood, we will also use x→ y to denote

(x, y) ∈ E.

Note that as opposed to our definition of an undirected graph, in the definition of a

digraph, we are ruling out loops, i.e., directed edges (x, y) such that x = y.38

Given a digraph G = (V , E), a topological order on G is a linear order Π on V such

that: x→ y implies xΠy, for all x, y ∈ V .

A digraph G = (V , E) is acyclic if there does not exist an integer n ≥ 2 and v1, . . . , vn ∈ V
such that: v1 → v2 → . . .→ vn → v1.

The following lemma is a standard result in graph theory.39

Lemma 4 Given a digraph G = (V , E), there exists a topological order on G if and only if

G is acyclic.
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