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Abstract

In several school choice districts in the United States, the student proposing

deferred acceptance algorithm is applied after indifferences in priority orders are

broken in some exogenous way. Although such a tie-breaking procedure preserves

stability, it adversely affects the welfare of the students since it introduces arti-

ficial stability constraints. Our main finding is a polynomial-time algorithm for

the computation of a student-optimal stable matching when priorities are weak.

The idea behind our construction relies on a new notion which we call a stable

improvement cycle. We also investigate the strategic properties of the student

optimal stable mechanism. (JEL C78, D61, D78, I20)

Until about a decade ago, children in the U.S. were assigned to public schools by the

district they live in, without taking into account the preferences of their families. Such

systems overlooked reallocations of seats which could Pareto improve welfare. Motivated

by such concerns, several cities in the U.S., including New York City, Boston, Cam-

bridge, Charlotte, Columbus, Denver, Minneapolis, Seattle, and St.Petersburg-Tampa,

started centralized school choice programs. Typically in these programs, each family

submits a preference list over schools including those outside of their district, and then
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a centralized mechanism assigns students to schools based on the preferences. The mech-

anisms initially adopted by school choice programs were ad hoc, and did not perform

well in terms of efficiency, incentives, and/or stability. Atila Abdulkadiroğlu and Tayfun

Sönmez (2003) brought these to daylight, which triggered an interest in the matching

literature about further analysis and design of school choice mechanisms.1

A school choice problem consists of a set of students and a set of schools where

each school x has a quota qx of available seats. Each student has a preference ranking

over schools and her outside option, which corresponds to remaining unassigned or

going to a private school, and each school has a priority ranking over students. The

school choice model is closely related to the college admissions model of David Gale

and Lloyd S. Shapley (1962). The important difference between the two models is that

in school choice, the priority rankings are determined by local (state or city) laws and

education policies, and do not reflect the school preferences, whereas in the college

admissions model these rankings correspond to college preferences.2 As a consequence

in the college admissions model, students’ as well as colleges’ preferences are taken

into account in welfare considerations. On the other hand in the school choice model,

schools are treated as indivisible objects to be consumed by the students and only

student preferences constitute the welfare criteria.

Given a priority ranking for each school and a preference profile of the students,

a matching violates the priority of student i, if there are a student j and a school x

such that i prefers x to her current assignment and j is assigned to x while he has less

1See Abdulkadiroğlu, Parag A. Pathak, and Alvin E. Roth (2005, 2008), Abdulkadiroğlu, Pathak,

Roth, and Sönmez (2005, 2006), Haluk Ergin (2002), Ergin and Sönmez (2006), and Onur Kesten (2005,

2006).
2There are certain exceptions like New York City, where a number of schools determine their own

priority orders. See Abdulkadiroğlu and Sönmez (2003), Michel Balinski and Sönmez (1999), and Ergin

(2002) for a more detailed discussion of the relationship between the two models.
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priority for school x than i. A matching is stable if (i) it does not violate any priorities,

(ii) every student weakly prefers his assigned seat to remaining unassigned, and (iii) no

student would rather be matched to a school which has empty seats. Stability has been

a property of central interest in the college admissions model, and in general in two-

sided matching markets. In addition to the theoretical plausibility of the notion, Roth

(2002) draws from both empirical and experimental evidence to show how stability has

been an important criterion for a successful clearinghouse in matching markets ranging

from the entry level labor market for new physicians in the United States to college

sorority rush. In the context of school choice, legal and political concerns appear to

strongly favor stable mechanisms. For instance if the priority of student i for school x is

violated, then the family of student i has incentives to seek legal action against the school

district for not assigning her a seat at school x, and the district authorities seem to be

extremely averse to such violations of priorities. Along those concerns, Boston officials

decided to adopt a mechanism that always produces stable matchings at the expense of

efficiency, rather than a mechanism – namely the top trading cycles mechanism – that

could guarantee efficiency, yet not stability.

Gale and Shapley (1962) gave a constructive proof of the existence of a stable match-

ing by describing a simple algorithm. This is known as the student proposing deferred

acceptance (DA) algorithm:

At the first step, every student applies to her favorite acceptable school. For

each school x, qx applicants who have highest priority for x (all applicants if

there are fewer than qx) are placed on the hold list of x, and the others are

rejected.

At step t > 1, those applicants who were rejected at step t − 1 apply to

their next best acceptable schools. For each school x, the highest priority qx

students among the new applicants and those in the hold list are placed on
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the new hold list and the rest are rejected.

The algorithm terminates when every student is either on a hold list or has been rejected

by every school that is acceptable to her. After this procedure ends, schools admit

students on their hold lists which yields the desired matching.

Gale and Shapley (1962) show that, when preferences and priorities are strict, the

DA algorithm yields the unique stable matching that is Pareto superior to any other

stable matching from the viewpoint of the students. Hence the outcome of the stu-

dent proposing DA algorithm is also called the student optimal stable matching and the

mechanism that associates the student optimal stable matching to any school choice

problem is known as the student optimal stable mechanism (SOSM).3 Besides the fact

that it gives the most efficient stable matching, another appealing feature of the SOSM

when priorities are strict is that it is strategy-proof, that is, no student has an incentive

to misstate her true preference ranking over schools (Lester E. Dubins and David A.

Freedman (1981), Roth (1982)). Due to these desirable features, the DA algorithm has

been adopted by the school choice programs of New York City (in 2003) and Boston (in

2005), in consultation with economists Abdulkadiroğlu, Pathak, Roth, and Sönmez.4

The DA algorithm, as described above, requires that both the preference orders and

priority orders be strict for it to be deterministic and single-valued. This is because

whenever a student proposes, she chooses her next best school, and a school rejects

the lowest priority students among those who applied. Obviously indifference classes

would create ambiguities in those choices. In the context of school choice it might be

reasonable to assume that the students have strict preferences, but school priority orders

are typically determined according to criteria that do not provide a strict ordering of all

3The SOSM has played a key role in the re-design of the U.S. hospital-intern market in 1998. See

Roth and Elliott Peranson (1999) and Roth (2003).
4See Abdulkadiroğlu, Pathak, and Roth (2005), Abdulkadiroğlu et al. (2005, 2006), and The Boston

Globe article “School assignment flaws detailed,” 9/12/2003.
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the students. Instead school priorities are weak orderings with quite large indifference

classes. For instance in Boston there are mainly four indifference classes for each school

in the following order: (1) the students who have siblings at that school (sibling) and

are in the reference area of the school (walk zone), (2) sibling, (3) walk zone, and (4) all

other students.5 Common practice in these cases is to exogenously fix an ordering of the

students, chosen randomly, and break all the indifference classes according to this fixed

strict ordering. Then one can apply the DA algorithm to obtain the student optimal

stable matching with respect to the strict priority profile derived from the original one.

Since the breaking of indifferences does not switch the positions of any two students

in any priority order, the outcome would be stable with respect to the original priority

structure too.

The following example illustrates that although tie-breaking seems like a quick solu-

tion to having indifferences in priority orders, it is not costless.

Example 1 Consider a school choice problem with three students, three schools each

having one seat, and the following priority orders

%x %y %z

1 2 3

2, 3 1, 3 1, 2

.

If the ties in the priority orders are broken favoring 1 over 2 over 3, then we obtain

the strict priority structure %′ below. Consider the following preference profile R of the

students

5There are also students who have a guaranteed priority to a given school. For a complete description,

see Abdulkadiroğlu et al. (2006) or “Introducing the Boston Public Schools 2007: A Guide for Parents

and Students,” available at http://www.boston.k12.ma.us/schools/assign.asp (accessed September 12,

2007).
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R1 R2 R3

y z y

x y z

z x x

%′x %′y %′z

1 2 3

2 1 1

3 3 2

.

The student optimal stable matching for the preference profile R and the strict priority

structure %′ is

µ =

 1 2 3

x y z

 .

However there is another matching

ν =

 1 2 3

x z y

 ,

which Pareto dominates µ and is stable with respect to % and R. �

When priorities are allowed to have indifferences, we define a student optimal stable

matching to be a stable matching that is not Pareto dominated by any other stable

matching. In Example 1, ν is a student optimal stable matching whereas µ is not since

it is Pareto dominated by the stable matching ν. Given a profile of weak priorities,

we define the student optimal stable mechanism (SOSM) to be the mechanism that

associates the set of student optimal stable matchings with every preference profile.

The SOSM may be multi-valued because of the indifferences in the priority orders.

The above example showed how the arbitrariness of the tie-breaking rule may cause

an efficiency loss. How can one find a stable matching that avoids such inefficiency?

The computer science literature on matching mostly includes results showing how in-

troducing ties makes various problems computationally hard.6 In contrast with those,

we will be giving a strikingly fast solution to the problem of finding a student optimal

6See for instance Magnús Halldórsson et al.(2003) and David F. Manlove et al. (2002).
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stable matching, which also shows that not all problems become highly complex when

indifferences exist.

Suppose for instance that at a stable matching, (i) student 1 would rather have a

seat at school x in which student 2 has a seat, (ii) student 2 would rather have a seat

at school y in which student 3 has a seat, and (iii) student 3 would rather have a seat

at school z in which student 1 has a seat. It is Pareto improving to carry out the

corresponding cyclic trade of seats among 1, 2, and 3, which would reallocate the seats

so that 1 is assigned to x, 2 is assigned to y, and 3 is assigned to z. However even if the

matching we started with is stable, in general, there is no guarantee that the resulting

matching after executing this cyclic trade will also be stable. For instance, there could

be a student 4 who also desires to be assigned to x in the initial matching and has

less x-priority than 2, but strictly more x-priority than 1. In this case the exchange

would violate the priority of 4 for x, since 4 prefers x to her current assignment and 1

is assigned to x while he has less priority for school x than 4.

We call a cycle consisting of (i), (ii), (iii) as the one above a stable improvement cycle

if at the original matching: (i’) 1 was among the highest x-priority students among those

who desire a seat at x, (ii’) 2 was among the highest y-priority students who desire a

seat at y, and (iii’) 3 was among the highest z-priority students who desire a seat at z. If

we start at a stable matching and execute a stable improvement cycle, it is guaranteed

that we will end up at a stable matching since conditions (i’), (ii’), and (iii’) make sure

that there are no intermediate students like 4 whose priority would be violated after

carrying out the cyclic trade.

We show in our main result that if a stable matching is not in the student optimal

stable set, then it admits a stable improvement cycle. Hence starting at any stable

matching we can construct a sequence of Pareto improving stable matchings, by carry-

ing out stable improvement cycles, until we reach a student optimal stable matching.
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The procedure, which we call the stable improvement cycles mechanism, is polynomial

in the number of students plus schools, hence it is computationally very simple. Since

our model is finite, exhaustive verification methods also give finite time algorithms

that compute a student optimal stable matching. However in contrast with our stable

improvement cycles algorithm, we note that these exhaustive algorithms are computa-

tionally quite complex and infeasible even for school choice problems consisting of a

small number of students and schools.

We can start the stable improvement cycles procedure with a random tie-breaking

followed by the DA algorithm to obtain a stable matching to Pareto improve upon.

This initial temporary matching is essentially what is returned in New York City and

Boston School Choice Programs. Therefore the search for stable improvement cycles

also provides an optimality test for these mechanisms. Furthermore, as each cycle Pareto

improves the initial match, one can provide a measure of the efficiency loss due to random

tie-breaking.

Using preference data from the New York City High School Match through the years

2003-2007, Abdulkadiroğlu, Pathak and Roth (2008) carry out this empirical exercise.

They document that, on average, over 1,700 students would have been matched with

schools higher on their preference lists without hurting others had the stable improve-

ment cycles mechanism been applied to the reported preferences. Thus, the efficiency

cost due to an arbitrary tie-breaking can be significant. Table I below shows how many

students’ matches could have been improved via the stable improvement cycles in the

years where DA algorithm was used following a random tie-breaking.

- Insert Table I here -

To complement this empirical finding, we report a number of sensitivity analyses

using simulations. In particular we investigate how the size of the Pareto improvement
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varies as the correlation among student preferences and the weight given to locational

proximity change.

We next turn to analyze the strategic properties of the SOSM when priorities are

weak. We show that in general there may not exist a deterministic or stochastic selection

from the SOSM, which is strategy-proof. We also show that given any such selection,

it is a Nash equilibrium for all students to state their true preferences at profiles where

the outcome of the SOSM is a singleton. Hence the former negative result seems to be

intimately related to multiplicities in the student optimal stable set.

Even when there is room for manipulation, this would require a particular kind

of information about the preferences and the priority rankings of the other students.

As a theoretical benchmark we show that if a student has symmetric beliefs about two

schools, then under an anonymous random selection from the SOSM, she can not benefit

by a misstatement that switches the ranking of these two schools in her true preference

profile. Accordingly under low information, when it is common knowledge that everyone

prefers being assigned to a school to staying unmatched, the preference revelation game

induced by the stable improvement cycles mechanism has truth-telling as a Bayesian

Nash equilibrium.

Throughout the paper, our welfare considerations take only student preferences into

account, and we have a one-sided perspective in that sense. In Aytek Erdil and Ergin

(2006) we model both sides as economic agents such as workers vs. firms. In two-sided

matching literature it has been a standard assumption that agents are not indifferent

between any two members of the opposite side, despite the existence of such indifferences

in various actual settings. A number of issues arise if agents are not assumed to have

strict preferences on the opposite side. Most importantly, stability no longer implies

Pareto efficiency, and the deferred acceptance algorithm can not be applied to produce

a Pareto efficient or a worker/firm optimal stable matching. In Erdil and Ergin (2006)
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we allow ties in preference rankings on both sides and explore the Pareto domination

relation on stable matchings, as well as the two relations defined via workers’ welfare

and firms’ welfare. Our structural results lead to fast algorithms to compute a Pareto

efficient and stable matching, and a worker [or firm] optimal stable matching.

In general, insisting on stability would have efficiency costs (from the perspective

of students) regardless of the tie-breaking rule. A complete characterization of priority

structures for which the stability constraints do not lead to such an efficiency loss is

given in Erdil (2008).

1 The Model and Preliminary Observations

Let N denote a finite set of students and X a finite set of schools. Let qx ≥ 1 denote

the number of available seats in school x. Throughout we will maintain the assumption

that student preferences are strict: A preference profile is a vector of linear orders

(complete, transitive and antisymmetric relations) R = (Ri)i∈N where Ri denotes the

preference of student i over X ∪ {i}. Being assigned to oneself is interpreted as not

being assigned to any school. Let Pi denote the asymmetric part of Ri. A matching

is a function µ : N → X ∪ N satisfying: (i) ∀i ∈ N : µ(i) ∈ X ∪ {i} and (ii) ∀x ∈

X : |µ−1(x)| ≤ qx. A mechanism f is a function that associates a non-empty set

of matchings with every preference profile. A random mechanism F associates a

probability distribution over matchings with every preference profile R.

A priority structure is a profile of weak orders (complete and transitive relations)

%= (%x)x∈X where for each x ∈ X, %x ranks students with respect to their priority for

x. Let �x denote the asymmetric part of %x. We say that % is strict if for any x ∈ X,

%x is antisymmetric. Let T (%) denote the set of strict priority profiles %′ obtained by
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breaking the ties in %.7 Given % and R, the matching µ violates the priority of i

for x, if there is a student j such that j is assigned to x whereas i both desires x and

has strictly higher priority for it, i.e., µ(j) = x, xPiµ(i), and i �x j. The matching µ

is stable if (i) it does not violate any priorities, (ii) µ(i)Rii for any i, and (iii) there

do not exist i and x such that xPiµ(i) and qx > |µ−1(x)|. Let S% denote the stable

mechanism, i.e., the mechanism that associates to each R the set of stable matchings

with respect to % and R.

Given R, the matching µ′ Pareto dominates the matching µ if µ′(i)Riµ(i) for

every i ∈ N , and µ′(j)Pjµ(j) for some j ∈ N . Given % and R, the matching µ is

constrained efficient (or student optimal stable) if (i) µ ∈ S%(R) and (ii) µ is

not Pareto dominated by any other µ′ ∈ S%(R). Let f% denote the student optimal

stable mechanism (SOSM), i.e., the mechanism that associates to each R the set of

constrained efficient matchings with respect to % and R. Given %, a mechanism f is

constrained efficient if for any R, f(R) ⊂ f%(R).

Theorem (Gale and Shapley, 1962) For any strict % and R, f%(R) consists exactly

of the matching given by the DA algorithm.

The following are well-known facts about how tie-breaking affects the stable and the

student optimal stable mechanisms. Their variants can be found in Gale and Shapley

(1962), Roth and Marilda Sotomayor (1990), and Lars Ehlers (2006). We explain the

arguments behind them below for completeness.

Observation 1 S% =
⋃

%′∈T (%) S%′
.

Observation 2 f% ⊂
⋃

%′∈T (%) f
%′

.

7Formally, T (%) is the set of strict priority structures %′ such that i �x j implies i �′
x j for all

x ∈ X and i, j ∈ N .
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When one breaks ties in % to obtain %′, the constraints required by stability weakly

increase. Hence stability becomes weakly more difficult to be satisfied under %′, which

gives the “⊃” part in Observation 1. To see the “⊂” part of Observation 1, take any

preference profile R and let µ be a stable matching with respect to R and %. For each

school x, break the ties among the students within each indifference class of %x by

favoring those that are assigned to x under µ, if any. By stability of µ prior to the tie-

breaking, if a student i strictly prefers a school x to her match, then any other student

j who is assigned to x must have weakly higher %x-priority than i. Since j is matched

to x under µ, she can not have less %′x-priority than i after the above tie-breaking. This

shows that µ ∈ S%′
(R).

To see Observation 2, take any R and let µ ∈ f%(R). From Observation 1, there

exists a tie-breaking %′ for which µ continues to be stable. Since any other matching µ′

that is stable with respect to %′ is also stable with respect to %, constrained efficiency

of µ under % implies constrained efficiency of µ under the tie-breaking %′. We conclude

that f%′
(R) = {µ}. As illustrated in Example 1, applying the DA after breaking the

ties in % may lead to outcomes that are not constrained efficient under %. Hence the

inclusion in Observation 2 might in fact be proper.

2 A Constrained Efficient Solution

Let µ be a stable matching for some fixed % and R. We will say that a student i desires

school x if she prefers x to her assignment at µ, that is xPiµ(i). For each school x, let

Dx denote the set of highest %x-priority students among those who desire x. We will

suppress the dependence of Dx on µ.

Definition 1 A stable improvement cycle consists of distinct students i1, . . . , in ≡ i0

(n ≥ 2) such that
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(i) µ(i`) ∈ X (each student in the cycle is assigned to a school),

(ii) i` desires µ(i`+1), and

(iii) i` ∈ Dµ(i`+1),

for any ` = 0, . . . , n− 1.

Given a stable improvement cycle define a new matching µ′ by:

µ′(j) =

 µ(j) if j /∈ {i1, . . . , in}

µ(i`+1) if j = i`

.

Note that the matching µ′ continues to be stable and it Pareto dominates µ. We are

now ready to present our main result.

Theorem 1 Fix % and R, and let µ be a stable matching. If µ is Pareto dominated by

another stable matching ν, then it admits a stable improvement cycle.8

If a stable matching is not constrained efficient, then there must exist a Pareto

improvement which is still stable. Theorem 1 tells us that to find such a Pareto im-

provement, it is enough to look for a stable improvement cycle. By successive application

of this result we can define a procedure that produces a constrained efficient matching,

which we call the stable improvement cycles algorithm.

Step 0:

Select a strict priority structure %′ from T (%). Run the DA algorithm and

obtain a temporary matching µ0.

Step t ≥ 1:

8We could actually “squeeze in” a stable improvement cycle between any two Pareto-ranked stable

matchings. Formally, we could guarantee that the new stable matching µ′ obtained from µ by applying

the improvement cycle, lies weakly below ν in a Pareto sense.
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(t.a) Given µt−1, let the schools stand for the vertices of a directed graph,

where for each pair of schools x and y, there is an edge x −→ y if and only

if there is a student i who is matched to x under µt−1, and i ∈ Dy.

(t.b) If there are any cycles in this directed graph, select one. For each edge

x −→ y on this cycle select a student i ∈ Dy with µt−1(i) = x. Carry out

this stable improvement cycle to obtain µt, and go to step (t+ 1.a). If there

is no such cycle, then return µt−1 as the outcome of the algorithm.

In the above description, we leave it open how the procedure should select %′ in

step 0, and how it should select the cycle and the student in step (t.b). Therefore one

can think of the above description as corresponding to a class of algorithms, where an

algorithm is determined only after we fully specify how to act when confronted with

multiplicity. One can imagine these selections to be random or dependent on the earlier

selections. Let F% denote the random mechanism induced by our algorithm when the

selections are made independently and randomly with equal probabilities each time the

algorithm faces a multiplicity. In the Section 4, we will analyze the strategic behavior

of the students under the random mechanism F%. Remember that given %, R, and

µ ∈ f%(R), there is a tie-breaking %′∈ T (%) such that the DA algorithm applied to

(R,%′) returns µ. Since each tie-breaking has positive probability of being selected at

step 0 of the algorithm corresponding to F%, F%(R) gives positive probability to every

constrained efficient matching.

Note that Observation 2 also yields an algorithm to find a student optimal stable

matching. Namely one could apply the DA algorithm to all possible tie-breakings of

the given priority structure, record the outcomes and Pareto compare them to find a

student optimal stable matching. However, even with a single indifference class of only

100 students, this would amount to running the DA algorithm more than 1090 times, a

computationally infeasible task. From a practical perspective, the value of our algorithm
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comes from its remarkably small computational complexity.9

Stable improvement cycles are closely related to Gale’s top-trading cycles, originally

introduced in Shapley and Herbert Scarf (1974) and later studied in detail by Szilvia

Pápai (2000) and Abdulkadiroğlu and Sönmez (2003). At a matching µ, a top-trading

cycle consists of students i1, . . . , in ≡ i0 (n ≥ 2) such that conditions (i) and (ii) in

our definition of a stable improvement cycle are satisfied, and additionally µ(i`+1) is

student i`’s top ranked school for ` = 0, . . . , n− 1. Suppose that matching µ is stable to

start with. There are two reasons for which we could not make use of top-trading cycles

in our construction. First, since condition (iii) is not required in a top-trading cycle,

there is no guarantee that the matching µ′ obtained after executing the top-trading

cycle will continue to be stable. Secondly, top-trading cycles are too demanding for our

purposes, since even when there exist Pareto improving trading cycles which preserve

stability, there may not exist such a cycle where all participating students receive their

top choices.

3 Simulations

In order to compare the performance of the stable improvement cycles algorithm to that

of the DA algorithm applied with random tie-breaking, we design a random environment

and employ computer simulations. Upon consulting the experts, both the New York City

9In addition to the DA algorithm used in practice, it involves a repetition of cycle search in a directed

graph. The latter is known to be of complexity O
(
|V |+ |E|

)
where V is the set of vertices and E the set

of edges (Thomas H. Cormen et al. (2003)). This obviously is very fast, the question is then how many

times one has to repeat the cycle search. Notice that with every cycle, at least two students improve,

therefore each cycle brings at least two moves up with respect to the students’ preferences. Since there

are |N | students and the student preferences involve |X| schools, there could be at most |N |(|X| − 1)

moves up. Therefore cycle search has to be repeated at most 1
2 |N |(|X| − 1) times.
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Department of Education (in 2003) and the Boston Public School System (in 2005)

adopted mechanisms which first randomly pick an ordering of the students according

to which they break the ties between students of the same priority, and then apply the

student proposing DA algorithm to the derived school choice problem with strict priority

structure and preferences.10 For brevity, let us call this mechanism RDA, standing for

Randomize and apply the DA algorithm.

Recall that our algorithm begins like RDA, but goes further, and Pareto improves on

the outcome of RDA by allowing exchanges of school seats through stable improvement

cycles as described in Section 2. It stops once it reaches a student optimal stable match-

ing. Whenever RDA fails to return a student optimal stable matching, our mechanism

will improve on it. In comparing the performance of the two mechanisms, we will ask

several questions. First of all, how significant is the improvement, that is, how many

students are effected by it, and how many moves up in their preferences are achieved?

And secondly, how do the number of students, the number of schools, correlation in

preferences, and preferences for locational proximity, affect the size of the Pareto im-

provement?

In developing our setup for the computational experiments, we aim to account for

a number of aspects of real life school choice problems. For instance in order to ensure

that certain schools are demanded more than others, we will allow for correlation in

student preferences. We also account for locational preferences, since ceteris paribus, a

student is more likely to prefer a school located closer to her residence to schools that

are located further. We also make sure that preferences for proximity are consistent

with the priority structure in the following sense: If a student has a high priority at a

school because she is in the walk zone of that school, then she should in turn be more

10See Abdulkadiroğlu, Pathak & Roth (2005, 2008) and Abdulkadiroğlu, Pathak, Roth & Sönmez

(2005).
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likely to favor that school because of its locational proximity.

Let the students be indexed by i = 1, . . . , n, and the schools be indexed by x =

1, . . . ,m, where for simplicity, we assume that q = n/m is an integer which is equal to

the number of seats in each school. For each student i and school x we represent the

locations of the student and the school in a two-dimensional map by points `i, `x ∈ R2,

respectively. Let i = 0 denote an artificially created dummy student with average tastes.

Let Zix be i.i.d. normally distributed random variables with mean zero and variance

one for i = 0, 1, . . . , n; x = 1, . . . ,m. We define the utility of student i = 1, . . . , n for

school x = 1, . . . ,m by:

(1) Uix = −βd(`i, `x) + (1− β)[αZ0x + (1− α)Zix]

where d(., .) denotes the usual Euclidean distance, and α, β ∈ [0, 1] are fixed common

parameters. The parameter α captures the correlation in student preferences and the

parameter β captures student preferences’ sensitivity to locational proximity.11 We

assume that each student is in the walk zone of the school located closest to her residence.

Each school’s priority order consists of only two indifference classes determined by its

walk zone.

Given parameters n, m, α, and β, in each simulation experiment we go through the

following steps:

1. Generate locational parameters of students and schools by using the i.i.d. uniform

distribution on [0, 1]× [0, 1];

2. Determine the priority structure from the locational parameters;

11It is easy to see that for any two students i and j, and school x, if β < 1, then correlation between

Uix and Ujx is given by α2/[α2 + (1−α)2]. Hence correlation is strictly increasing in α, it is 0 at α = 0,

and 1 at α = 1. Similarly students put zero weight on location if β = 0, they evaluate schools solely

based on proximity if β = 1, and intermediate values of β qualitatively capture the weight given to

proximity in student preferences.
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3. Generate the i.i.d normal variables Zix and determine the utility values from For-

mula (1). Define the preference of each student i by: xPiy ⇔ Uix > Uiy where all

schools are acceptable;

4. Randomly pick an ordering of the students and apply RDA;

5. Pareto improve over RDA by using the stable improvement cycles algorithm. Com-

pute the percentage of students who improve from RDA, as well as the average

number of steps up the preference list of the improving students.

As opposed to earlier computational simulations in the literature such as Yan Chen

and Sönmez (2006) with 36 students and 7 schools, and Kesten (2005) with 240 stu-

dents and 12 schools, we conducted experiments with relatively large sets of schools and

students. We ran a number of experiments where the number of schools ranges from 10

to 100, and the number of students per school from 5 to 200. We report a few of them

below.

- Insert Figure I here -

Figure I shows how the parameters α and β affect the percentage of improving

students for a school choice problem consisting of 1000 students and 20 schools. For

each (α, β) pair, the plotted percentage improvement corresponds to an average over

200 simulation experiments.

In Figure I, first consider the curve corresponding to β = 0. For α = 0, we do not

observe almost any stable improvement cycles. This is not surprising, because in this

case, the preferences are independent and schools are symmetric, therefore students’ top

choices are evenly distributed across schools, leading to little conflict. As correlation

in preferences increases, some schools are demanded more than others. As a result,

how the ties are broken at these schools becomes critical and we observe an increase in
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the number of students that can be improved via stable improvement cycles. Figure I

also suggests that the efficiency loss peaks for some value of α, and starts decreasing

thereafter. This is due to the fact that for values of α close to 1 the preferences start

becoming so similar that exchanging seats becomes less likely to be mutually profitable.

In the extreme case when α = 1, the preferences are identical and there is no stable

improvement cycle at all.

Note that as β increases, the preferences of students who live close to each other

become more similar and the preferences of those who live far from each other become

less similar. Hence β can be thought of as adding a positive correlation in the preferences

of students who live close to each other, and a negative correlation in the preferences

of those who live far from each other. Since priorities are also based on location, an

increase in β increases the correlation in the preferences of students within the same

priority class and decreases the correlation in the preferences of students within different

priority classes. Figure I suggests a direction in which these two effects systematically

play out: The single-peaked pattern in α shifts “southwest” (i.e., the peak of the figure

drops and it is reached for lower values of α) as β increases.

When β = 1 students’ preferences are determined solely by locational proximity. In

this case note that in Figure I, the percentage improvement is identically zero for every

value of α. The reason is that when preference for proximity is extreme, for each school

x the students in the walk zone of x top rank x. It is possible to show that this fact,

along with the assumption that priorities have two indifference classes implies that RDA

is unconstrained Pareto efficient, hence there is no room for Pareto improvement.12

- Insert Figure II here -

Figure II reports the average number of steps up the preference lists of the improving

12Note however that when β = 1, it might not be possible to assign everyone to her district school since

a school could have more students in its walk zone than the number of students it can accommodate.
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students which is seen to vary between 1 and 3 in the above simulations. For a robustness

check, we ran 12 simulations analogous to those that generated Figures I and II where

the number of students was 200, 400, 1000, and 2000 and the number of schools was

10, 20, and 40. In these simulations there were no qualitative changes in the above

observations.

4 Strategic Properties

A single-valued mechanism f is strategy-proof if for any preference profile R, student

i and R′i, we have fi(Ri, R−i)Rifi(R
′
i, R−i). We know from Dubins and Freedman (1981)

and Roth (1982) that in the case of strict priorities, the constrained efficient mechanism

f% is strategy-proof. When we allow the priority orders to be weak, the constrained

efficient set is not necessarily a singleton. In this case, it is natural to ask whether there

is a single-valued mechanism f ⊂ f% that is strategy-proof. The following example gives

a negative answer to this question.

Example 2 Consider a school choice problem with three schools x, y, z, each having

one seat, three students 1, 2, 3 who find all schools acceptable, and

R1 R2 R3

y y x

z z y

x x z

%x %y %z

1 3 3

2 1, 2 2

3 1

.

The constrained efficient set consists of only two matchings

f%(R) =


 1 2 3

y z x

 ,

 1 2 3

z y x

 .

Consider the following manipulations
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R′1 R′2

y y

x x

z z

.

If student 1 announces R′1 when the other students announce truthfully, then

f%(R′1, R−1) =


 1 2 3

y z x

 .

Similarly, if student 2 announces R′2 when the other students announce truthfully, then

f%(R′2, R−2) =


 1 2 3

z y x

 .

Consider any single-valued mechanism f ⊂ f%. For the preference profile R, f

has to select one of the matchings (1y, 2z, 3x) or (1z, 2y, 3x). If it selects (1y, 2z, 3x),

then student 2 has an incentive to misrepresent her preference and submit R′2. On the

other hand if it selects (1z, 2y, 3x), then student 1 has an incentive to misrepresent her

preference and submit R′1. Therefore f is not strategy-proof. �

For each student i, our model only specifies an ordinal ranking Ri over X ∪{i}. As-

suming that the student is an expected utility maximizer, we need to know her cardinal

(vNM) utility function ui : X ∪ {i} → R to fully specify her risk preferences. Given two

probability distributions p and q over X ∪ {i}, p [strictly] first order stochastically

dominates q with respect to Ri if

∑
y∈X∪{i} : yRiz

p(y) ≥
∑

y∈X∪{i} : yRiz

q(y)

for all z ∈ X∪{i} [with strict inequality for some z ∈ X∪{i}]. It is a standard fact that

p [strictly] first order stochastically dominates q with respect to Ri if and only if for any
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vNM utility function ui that gives the same ordinal ranking as Ri, the expected utility

of p is [strictly] weakly more than the expected utility of q. Given a random mechanism

F , a preference profile R, and a student i, let Fi(R) denote the random allocation of i

with respect to F (R). The argument in Example 2 can be adapted to conclude that the

above impossibility persists even for random mechanisms.

Observation 3 Let N , X, and % be as in Example 2 and let F be any random mecha-

nism which gives a constrained-efficient allocation with probability one in each preference

profile. Then there exist R, i, and R′i, such that Fi(R
′
i, R−i) strictly first order stochas-

tically dominates Fi(Ri, R−i) with respect to Ri.

Hence strategy-proofness and constrained efficiency are incompatible.13 In the ex-

ample above the strategic manipulation was aimed at ruling out the less preferred con-

strained efficient allocation and consequently singling out the preferred one. Could a

student manipulate her submitted ranking to induce a new matching where she is as-

signed to a school more preferable than every school she could possibly be assigned to

under her truthful statement? It turns out that she cannot hope for more than her best

possibility in the constrained efficient set.

Theorem 2 For any ν ∈ f%(R′i, R−i), there is µ ∈ f%(R) such that µ(i)Riν(i).

Remember the random mechanism F%. Even when a student has perfect knowledge

of the priority structure and the preferences of all students, since the algorithm involves

random selections, there is uncertainty to what outcome will be returned. The com-

putation of the likelihood of a particular constrained efficient solution being returned

is highly involved, and when faced with such uncertainty, what would an “optimist”

13A related result by Abdulkadiroğlu, Pathak, and Roth (2008) leads to the same conclusion: If f

is the SOSM with respect to a fixed strict priority profile, then there is no strategy-proof mechanism

that Pareto dominates f at every preference profile.
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do? Someone who tends to base her actions on her best assignment possible among the

student-optimal solutions would consider manipulating only if such strategic announce-

ment brought her a school more preferable than any school she could be assigned under

her truthful revelation. So Theorem 2 could be interpreted to conclude that an optimist

would not manipulate. Moreover, if for a particular preference profile there is only one

constrained efficient matching, then no student would have any incentives to unilaterally

misstate her preferences.

Corollary 1 Given %, let F be any random mechanism that returns a student optimal

stable matching with probability one. Then if R, i, and R′i, are such that µ(i) is the same

for all µ ∈ f%(Ri, R−i), then Fi(Ri, R−i) first order stochastically dominates Fi(R
′
i, R−i)

with respect to Ri. In particular, if f%(R) is a singleton, then at R, truth-telling is a

Nash equilibrium of the preference revelation game induced by F .

We have seen in Example 2 that every selection from the SOSM was manipulable,

but student 1 needed significant information regarding the preferences of students 2 and

3 in order to be able to correctly evaluate the consequences of her switching schools x

and z in her preference list.14 One may ask if a student with low information about the

preferences and priorities of others would find it profitable to employ such manipulation.

14It is possible that a student may have an incentive to manipulate the mechanism F% under an

incomplete information environment without having detailed information about the others’ preferences.

An example is when certain schools are commonly recognized as being popular, i.e., ex-ante more likely

to be highly ranked by the students. In that case a student i who has high priority at a popular school

x may find it profitable to lift school x in her submitted ranking. The rationale is that, she may gain if

she is temporarily assigned to x at Step 0 of the algorithm and if she is able to “trade” x at subsequent

stages of the algorithm. Such a manipulation would be profitable only if student i does not rank x

very highly but has sufficient confidence on the popularity of x. Hence one would expect the ex-ante

likelihood of this manipulation to be low.

23



As a benchmark for a low information environment, we adopt the framework of

Roth and Uriel Rothblum (1999). A student’s beliefs about two schools x and y are

symmetric if when one changes the roles of x and y in the random variable interpreted

as her beliefs on (%, R−i), the distribution of the random variable does not change.15

When this is the case, it turns out that under our random mechanism F%, it is not

profitable for a student two misstate her preferences by switching those two schools in

her preference.

Theorem 3 Assume that i has symmetric beliefs about schools x and y, and that R′i

is obtained from Ri by switching the places of x and y. Then F
%
i (Ri, R−i) first order

stochastically dominates F
%
i (R′i, R−i) with respect to Ri.

In the firms-workers model of Roth and Rothblum (1999) with strict preferences on

both sides, it was found that under the firm-proposing DA algorithm it may be profitable

for a worker to submit a truncated preference, where a truncation of a preference list

Ri containing r acceptable firms is a list R′i containing r′ ≤ r acceptable firms such

that the r′ firms in R′i are the top r′ in Ri with the same order. Since we are analyzing

the SOSM, with strict priorities truthful statement of a student would be her dominant

strategy ruling out any manipulation including truncation strategies. It turns out that

in the case of weak priorities too, truncation strategies are never profitable for students,

independently of their beliefs about preferences and priorities of others.

Theorem 4 If R′i is a truncation of Ri, then for any belief of i over (%, R−i), F
%
i (Ri, R−i)

first order stochastically dominates F
%
i (R′i, R−i) with respect to Ri.

However, another set of strategies might emerge, even when the student has almost

no information allowing her to distinguish between others’ priorities and preferences.

Formally, an extension of a preference list Ri containing r acceptable schools is a list

15See Appendix A.3 for a precise definition.
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R′i containing r′ ≥ r acceptable schools such that the r elements of Ri are the top r in

R′i with the same order. Under F%, manipulation by announcing an extension strategy

may be profitable even under symmetric information. We next present an example

illustrating this observation:

Example 3 Consider three students 1, 2, and 3, and two schools x and y each having

one seat. Suppose that every student has equal priority for all schools. Student 1’s vNM

preference is given by u1(y) = 1, u1(1) = 0, and u1(x) = −ε for some ε > 0, hence her

true ordinal preference R1 is such that yP11P1x. Her beliefs over %x, %y, R2, and R3 are

independent and uniform over the respective domains, in particular they are symmetric

for x and y. Suppose that the random mechanism F% is being used and that student 1

is contemplating to manipulate her true ranking and announcing the extension R′1 such

that yP ′1xP
′
11.

Recall the algorithm corresponding to our random mechanism and fix a realization

of %, R−1, and %′∈ T (%). Conditional on (R−1,%′), if student 1 submits R1 and the

algorithm assigns her to y, then this assignment must have been reached in step 0 as a

result of the DA algorithm being applied to (R1, R−1,%′). In this case if she submits

R′1, the algorithm would again assign her to y in step 0 as a result of the DA algorithm

being applied to (R′1, R−1,%′). Therefore student 1 can lose by announcing R′1 instead

of R1, only if the realization (R−1,%′) is such that she is left unassigned if she announces

R1. Before the realization of (R−1,%′), this expected loss is bounded above by ε from

the point of view of student 1.

On the other hand, if the realization of (R−1,%′) is such that

R2 R3

x y

y x

2 3

%′x %′y

1 2

3 3

2 1
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then student 1 is left unassigned if she submits R1 and she is assigned to y if she

submits R′1. Let p > 0 denote the probability of the above realization. If the student’s

risk preferences are such that ε < p, then she will prefer to announce R′1 when her true

ordinal ranking is R1. �

From the proofs of Theorems 3 and 4, it follows that the only profitable strategic

manipulation in a low information environment is to lengthen one’s list. If, in addition,

it is common knowledge that all schools are acceptable for all students, then being

truthful is a Bayesian Nash equilibrium of the preference revelation game, under the

random mechanism F%.16

5 Conclusion

Versions of the DA algorithm are being adopted in several school choice districts in

the U.S., and to our knowledge, all of them employ a random tie-breaking rule when

faced with indifferences. We have pointed out that this may cause a significant loss of

efficiency by returning a matching that is not in the student optimal stable set with

respect to the original priority structure. We introduced the stable improvement cycles

algorithm which Pareto improves upon a stable matching whenever it is possible to do

so without violating priorities, and eventually returns an element of the student optimal

stable set. A strategic analysis shows that there need not be a strategy-proof selec-

tion from the SOSM. A consequence is that there is a tradeoff between efficiency and

strategy-proofness. We were able to show that in the benchmark symmetric information

environment, being truthful is a Bayesian Nash equilibrium. Developing an understand-

ing of informational environments approximating real life situations and the kind of

manipulation strategies that arise in those contexts is an important open question.

16We thank John Hatfield for suggesting this corollary.
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A Appendix

A.1 Proof of Theorem 1

In the case of strict priorities it is well known that the set of school seats filled is the

same at every stable outcome, as is the set of students who are assigned seats. This is

no longer the case for weak priorities. However the following lemma implies that the

conclusion holds between Pareto comparable stable matchings.

Lemma 1 Let % and R be given. Suppose that µ is a stable matching that is Pareto

dominated by a (not necessarily stable) matching ν. Let N ′ denote the set of students

who are strictly better off under ν and let X ′ = µ(N ′) be the set of schools to which

students in N ′ are assigned under µ. Then we have:

(i) Students that are not in N ′ have the same match under µ and ν.

(ii) The number of students in N ′ who are assigned to a school x are the same in µ

and ν. In particular, X ′ = ν(N ′).

(iii) Each student in N ′ is assigned to a school (i.e., not to herself) in µ and in ν.

Proof. Part (i) follows from the facts that i ∈ N \N ′ is indifferent between µ(i) and

ν(i), and her preferences are strict.

For part (ii), let us first show that |N ′ ∩ µ−1(x)| ≥ |N ′ ∩ ν−1(x)| for any school x.

Suppose to the contrary that |N ′ ∩ µ−1(x)| < |N ′ ∩ ν−1(x)| for some school x. Together

with part (i), this implies that the number of students in N who are assigned to x in

µ is less than the number of students who are assigned to x in ν. Hence x must have

empty seats under µ. However for any i ∈ N ′ ∩ ν−1(x), x = ν(i)Piµ(i), that is i desires

x which has empty seats under µ, a contradiction to the stability of µ.
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Now suppose that the inequality |N ′∩µ−1(x)| ≥ |N ′∩ν−1(x)| holds strictly for some

school x∗. Summing across all schools we have:

∑
x∈X

|N ′ ∩ µ−1(x)| >
∑
x∈X

|N ′ ∩ ν−1(x)|.

In other words, the number of students in N ′ who are assigned to some school in µ is

more than the number of students in N ′ who are assigned to some school in ν. Hence

there exists a student i in N ′ who is assigned to a school in µ, but not in ν. Since

i = ν(i)Piµ(i), this contradicts the stability of µ.

We already know from part (ii) that:

|N ′| ≥
∑
x∈X

|N ′ ∩ µ−1(x)| =
∑
x∈X

|N ′ ∩ ν−1(x)|

To prove part (iii), we only need to show that the inequality above can not hold strictly.

Suppose for a contradiction that:

|N ′| >
∑
x∈X

|N ′ ∩ µ−1(x)| =
∑
x∈X

|N ′ ∩ ν−1(x)|

Hence there exists a student i ∈ N ′ who is unmatched in ν. Note that i has to be

matched in µ, otherwise she would be indifferent between µ and ν, a contradiction to

her being in N ′. But then i = ν(i)Piµ(i), a contradiction to the stability of µ.

Proof of Theorem 1.17 Suppose that µ and ν are stable matchings and that ν Pareto

dominates µ. As in Lemma 1, let N ′ denote the set of students who are strictly better

off under ν. Let X ′ = µ(N ′) be the set of schools to which students in N ′ are assigned

to under µ.

17In the following footnotes, we indicate the necessary modifications in the proof in order to guarantee

that the new stable matching µ′, obtained from µ by applying the improvement cycle, lies weakly below

ν in a Pareto sense.
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For any x ∈ X ′, let N ′x denote the highest %x-priority students among those in N ′

that desire x at µ. N ′x is non-empty since x is desired by (at least) the students in N ′

who are assigned to x in ν. We know such students exist since x ∈ X ′ = v(N ′) by part

(ii) of the above Lemma.

Fix an arbitrary student ix ∈ N ′x and let the school µ(ix) point to x.18 Note that

µ(ix) ∈ X ′ by part (iii) of the above Lemma and µ(ix) 6= x, since ix desires x. We can

repeat this for each school x ∈ X ′ and fix a school y ∈ X ′ \ {x} that points to x.

Since each school in X ′ is pointed to by a different school in X ′, there exists a cycle

of distinct schools x1, . . . , xn ≡ x0 in X ′ where x` points to x`+1 for ` = 0, . . . , n − 1

and n ≥ 2. Let i` = ix`+1
for ` = 0, . . . , n − 1. Since x` points to x`+1 and i` ≡ ix`+1

,

we have µ(i`) = x`. In particular i1, . . . , in are distinct and they are all assigned to a

school. Moreover by construction i` ≡ ix`+1
desires µ(i`+1) = x`+1.

Let Dx denote the set of highest %x-priority students among those who desire x at

µ. Let Bx denote the set of students who desire x at µ and are strictly below Dx with

respect to %x. Note that i` ∈ Dµ(i`+1)∪Bµ(i`+1), which implies that Dµ(i`+1) is non-empty.

It remains to show that i` ∈ Dµ(i`+1). Suppose to the contrary that i` lies in Bµ(i`+1).

By construction, i` is a highest %µ(i`+1)-priority student among those in N ′ who desire

µ(i`+1), hence Dµ(i`+1) has empty intersection with N ′.

Choose any j ∈ Dµ(i`+1). From above j /∈ N ′ and j �µ(i`+1) k for any k ∈ N ′ who

desires µ(i`+1). Since µ(i`+1) ∈ X ′ = ν(N ′) by part (ii) of the above Lemma, there is

k ∈ N ′ who is matched to µ(i`+1) under ν. In particular k desires µ(i`+1) at µ, hence

j �µ(i`+1) k. Since j desires µ(i`+1) at µ and µ(j) = ν(j) by part (i) of the above

Lemma, she also desires µ(i`+1) at ν. This contradicts the stability of ν, since j has

18In order to guarantee that the new stable matching µ′, obtained from µ by applying the improvement

cycle, lies weakly below ν in a Pareto sense we need to select ix slightly more carefully: If there is a

student i ∈ N ′
x who is assigned to x in ν, fix ix to be one of those students, otherwise fix ix arbitrarily.
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higher %µ(i`+1)-priority than k who is matched to µ(i`+1) at ν.19

A.2 Proof of Theorem 2

Let x be the best school that student i can be assigned to among her assignments

from f%(R). Suppose that there is a preference ordering R′i such that ν ∈ f%(R′i, R−i)

and ν(i)Pix. We know that ν = f%′
(R′i, R−i) for some tie-breaking %′∈ T (%). But

in the case of strict priority orders, we also know that the only constrained efficient

assignment is the student optimal one, and it is a dominant strategy to reveal one’s

preferences truthfully. Hence if µ′ = f%′
(R), then

µ′(i)Riν(i)Pix.

Since x is the best school that student i could expect from the assignments in f%(R),

µ′ must not be constrained efficient with respect to R and %. It is stable since it is

the outcome of the DA algorithm applied to a tie-breaking %′. Therefore it must be

Pareto dominated by an assignment ν ′ ∈ f%(R) which implies xRiν
′(i)Riµ

′(i) leading

to a contradiction with our earlier conclusion µ′(i)Pix.

19To show that the new stable matching µ′, obtained from µ by applying the improvement cycle,

may be guaranteed to lie weakly below ν in a Pareto sense, it is enough to prove that ν(i`)Ri`
µ(i`+1)

(` = 0, . . . , n−1) under the more careful selection of ix’s indicated in the above footnote. To prove this

remember that x`+1 = µ(i`+1), ix`+1 = i`, and suppose that x`+1Pix`+1
ν(ix`+1). Since ν(ix`+1) 6= x`+1,

there are must be no student in N ′
x`+1

who is assigned to x`+1 at ν. Therefore by construction of

N ′
x`+1

, any student k ∈ N ′ who is assigned to x`+1 at ν (and hence desires x`+1 at µ) has strictly

less %x`+1-priority than ix`+1 . This contradicts the stability of ν, since ix`+1 desires x`+1 at ν and

ν(k) = x`+1. (The existence of such a k is again guaranteed since x`+1 ∈ X ′ = ν(N ′) by part (ii) of

the Lemma.)
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A.3 Proof of Theorem 3

We will use the shorthand M for a pair (%, R). We continue to suppress the quota qx of

each school x within the notation %x. For any two schools x and y, let Rx↔y denote the

preference profile obtained from R by switching x and y in each student’s preference.

Similarly let %x↔y denote the priority structure obtained from % by switching the quotas

and priority orders of x and y. Let Mx↔y stand for (%x↔y, Rx↔y). Then Rx↔y
i is the

preference order of student i obtained from Ri by switching x and y, and Mx↔y
−i =

(%x↔y, Rx↔y
−i ) is obtained from M−i by switching the roles of x and y in % and in the

preferences of all students except i.

We summarize the beliefs of student i about the stated preferences and priorities of

the others by a random variable M̃−i. For any two schools x and y, we say that M̃−i is

{x, y}-symmetric if the distributions of M̃−i and M̃x↔y
−i coincide. This assumption can

be interpreted as saying that student i’s beliefs can not distinguish between these two

schools, from the preferences and priorities of the other students. The {x, y}-symmetry

assumption does not necessarily imply that student i has no information concerning

x and y, for instance it is consistent with beliefs where certain students always prefer

x and y to a third school z, or where with a certain probability student i has higher

priority than another student j for both x and y, and so on.

Given M̃−i and Ri, the probability that student i is matched to x ∈ X ∪ {i} is

pi(Ri, M̃−i)(x) ≡
∑

Pr
{
M̃−i = (%, R−i)

}
Pr
{
F

%
i (Ri, R−i) = x

}
where the sum is taken across all possible realizations (%, R−i) of M̃−i. The following

lemma states that if a student i prefers school y to x, regardless of M−i, her probability

of receiving y when she announces Rx↔y
i is less than or equal to her probability of

receiving y when she is truthful. Symmetrically, her probability of receiving x when

she announces Rx↔y
i is at least as much as her probability of receiving x when she is
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truthful.20

Lemma 2 If x, y ∈ X and yPix, then

(i) pi(R
x↔y
i ,M−i)(y) ≤ pi(Ri,M−i)(y),

(ii) pi(R
x↔y
i ,M−i)(x) ≥ pi(Ri,M−i)(x).

Proof. We start by proving part (i). Recall that the algorithm associated with F%

starts with the selection of a tie-breaking of %. For a fixed tie-breaking %′∈ T (%), we

will compare for Ri and Rx↔y
i , the probabilities with which the rest of the algorithm will

return an assignment µ with µ(i) = y. Let µ0 = f%′
(R) and R′i = Rx↔y

i . We consider

four cases depending on µ0(i).

If µ0(i) = z where zPiyPix, then f%′
(R′i, R−i)(i) = z due to well known properties of

the DA algorithm for strict priority structures. Since the mechanism will be employing

stable improving cycles dominating µ0, her preferences regarding schools less preferable

than z will not matter at all. In particular in this case her probability of obtaining y

will be zero regardless of her switching or not switching x and y in her preference.

If µ0(i) = x, then it is not hard to see again that f%′
(R′i, R−i)(i) = µ0(i) = x. If she

announces R′i = Rx↔y
i , she will never obtain y by participating in a stable improvement

cycle in steps t ≥ 1 of our algorithm since xP ′iy. Therefore her probability of eventually

being assigned to y in this case is zero if she announces Rx↔y
i .

20Theorems 3 and 4 are stated for the random mechanism F%. Remember that in the stable im-

provement cycles algorithm leading to F%, we have assumed that a selection is made independently and

randomly with equal probabilities, each time the algorithm faces a multiplicity. In proving these results,

we only use the facts that these randomizations are made independently and anonymously, i.e., they do

not depend on the particular labeling of students and schools. For instance the same conclusions hold

for the random mechanism G% which differs from F% only in that, the algorithm leading to it selects a

cycle in step (t.b) independently and randomly with equal probabilities from among the largest stable

improvement cycles.
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If µ0(i) = z where yRizPix, since the outcome of the mechanism will be a weak

Pareto improvement of µ0 with respect to the announced preferences, by announcing

Rx↔y
i , her probability of getting school y will be zero.

Last, let µ0(i) = z where yPixPiz. At step 0 of the algorithm, the pictures are

identical for her announcing Ri and Rx↔y
i since she prefers both x and y to z. Similarly,

at any stage of the updating of the directed graph, the pictures look alike when the

temporary assignment at that stage is less preferable than both x and y. Therefore, for

all those steps, the probabilities of the next step are identical for Ri and Rx↔y
i . Those

probabilities would matter when at a temporary assignment, she is assigned to a school

w such that yRiwRix. For that very step, announcing Rx↔y
i would equal her probability

of obtaining y to zero as she would not appear to be desiring y anymore. And finally if

her temporary assignment were to be wPiy, then it would not matter if she announced

Ri or Rx↔y
i .

The above argument is independent of %′∈ T (%), and we have shown for each tie-

breaking that her probability of receiving y by announcing Rx↔y
i is less than or equal

to what it would be when she announces Ri. Therefore part (i) follows. To see part (ii),

let M ′ = (Rx↔y
i ,M−i). Since xP ′iy, by part (i)

pi(R
′x↔y
i ,M ′

−i)(x) ≤ pi(M
′)(x),

which could be rewritten as (ii).

Lemma 3 For any distinct x, y, z ∈ X and Ri, if M̃−i is {x, y}-symmetric, then

pi(R
x↔y
i , M̃−i)(z) = pi(Ri, M̃−i)(z).

Proof. By the anonymous specification of the random mechanism F%, for any fixed

M we have

pi(M
x↔y)(z) = pi(M)(z).

33



Hence if we apply the above identity to the profile (Rx↔y
i ,M−i), we obtain

pi(R
x↔y
i ,M−i)(z) = pi(Ri,M

x↔y
−i )(z).

By {x, y}-symmetry of beliefs, integrating each side over possible realizations of M̃−i

yields the desired equality.

Proof of Theorem 3. Follows from Lemma 2 and Lemma 3 above.

A.4 Proof of Theorem 4

Suppose that x is the school at the bottom of her truncated preference list R′i. We will

prove that for any school yRix,

Pr{i receives y | (R′i,M−i)} ≤ Pr{i receives y | (Ri,M−i)},

which in turn would imply the desired stochastic dominance. As in the proof of Lemma

2, we will prove the above inequality conditional on a fixed tie-breaking selected at the

beginning of the mechanism. As our argument will be independent of which tie-breaking

is chosen, integrating over all possible tie-breakings would yield the inequality.

Let %′ be the tie-breaking, and let f%′
(R) = µ0 and f%′

(R′i, R−i) = ν0. If ν0(i) =

zRix, by the DA algorithm, ν0 = µ0 and in particular µ0(i) = z. So the rest of our

algorithm looks identical starting from µ0 or ν0, implying

Pr{i receives y | (R′i,M−i), %′ selected} = Pr{i receives y | (Ri,M−i), %′ selected}.

If µ0(i) = z where xPiz, then ν0(i) = i, that is i will not be assigned to any school under

ν0. By part (ii) of Lemma 1, she will continue to be assigned to herself for any stable
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improvement of ν0, therefore her probability of receiving any school is zero, verifying

the desired inequality trivially.
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Table I. Improvements via Stable Improvements Cyclesa

Number of Number of Percent of

Year assigned students improving students improving students

2003–2004 63,749 1,693 2.7

2004–2005 76,831 1,986 2.6

2005–2006 73,378 1,818 2.5

2006–2007 73,115 1,487 2.0

a These numbers are from Abdulkadiroğlu, Pathak, and Roth (2008).
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