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Perfect information

A finite extensive game with perfect information Γ = h (%)i
consists of

— A set  of players.

— A set  of sequences (histories) where ∅ ∈  and for any   

()=1 ∈  =⇒ ()=1 ∈ 

— A player function  : \ →  where  ∈  ⊆  if ( ) ∈ .

— A preference relation % on  for each player  ∈  .



Strategies, outcomes and Nash equilibrium

A strategy

 : → () for every  ∈ \ such that  () = .

A Nash equilibrium of Γ = h (%)i is a strategy profile (∗ )∈
such that for any  ∈ 

(∗) % ( 
∗
−) ∀

where () = (1  ) ∈  such that

 (1)(
1  ) = +1

for any 0 ≤    (an outcome).



The (reduced) strategic form

 =
D
 () (%0)

E
is the strategic form of Γ = h (%)i if for

each  ∈  ,  is player ’s strategy set in Γ and %0 is defined by

 %0 0⇔ () %0 (0) ∀ 0 ∈ ×∈

 =
D
 (0) (%00 )

E
is the reduced strategic form of Γ = h (%)i

if for each  ∈  , 0 contains one member of equivalent strategies in ,
that is,

 
0
 ∈  are equivalent if ( −) ∼0 (0 −)∀ ∈ 

and %00 defined over ×∈0 and induced by %0.



Subgames and subgame perfection

A subgame of Γ that follows the history  is the game Γ()

h |   |  (% |)i
where for each 0 ∈ 

( 0) ∈  | (0) =  ( 0) and 0 % | 00⇔ ( 0) % ( 
00)

∗ ∈ ×∈ is a subgame perfect equilibrium () of Γ if

(
∗
 |  ∗− |) % | ( |  ∗− |)

for each  ∈  and  ∈ \ for which  () =  and for any  | 

Thus, the equilibrium of the full game must induce on equilibrium on every
subgame.



Backward induction and Kuhn’s theorems

Let Γ be a finite extensive game with perfect information

— Γ has a  (Kuhn’s theorem).

The proof is by backward induction (Zermelo, 1912) which is also
an algorithm for calculating the set of .

— Γ has a unique  if there is no  ∈  such that  ∼ 
0 for any

 0 ∈ .

— Γ is dominance solvable if  ∼ 
0 ∃ ∈  then  ∼ 0 ∀ ∈ 

(but elimination of weakly dominated strategies in  may eliminate the
 in Γ).



Forward induction

• Backward induction cannot always ensure a self-enforcing equilibrium (Ben-
Porath and Dekel; 1988, 1992).

• In an extensive game with simultaneous moves, players interpret a deviation
as a signal about future play.

• The concept of iterated weak dominance can be used to capture forward
and backward induction.



(Van Damme 1989) A solution concept  is consistent with forward induction
in the class Γ = h{1 2}  (%)i if there is no equilibrium in  such
that player 

— can ensure that a proper (outside-option) subgame of Γ is reached by
deviating, and

— according to , (∗) Â () and (0) Â (
∗) for one 0 and

all  6= 0

Thus a deviation gives a clear signal how the deviator intends to play in
the future.



Bargaining

In the strategic approach, the players bargain over a pie of size 1.

An agreement is a pair (1 2) where  is player ’s share of the pie. The
set of possible agreements is

 = {(1 2) ∈ R2+ : 1 + 2 = 1}

Player  prefers  ∈  to  ∈  if and only if   .



The bargaining protocol

The players can take actions only at times in the (infinite) set  =

{0 1 2 }. In each  ∈  player , proposes an agreement  ∈ 

and  6=  either accepts ( ) or rejects ().

If  is accepted ( ) then the bargaining ends and  is implemented. If 
is rejected () then the play passes to period  + 1 in which  proposes
an agreement.

At all times players have perfect information. Every path in which all offers
are rejected is denoted as disagreement (). The only asymmetry is that
player 1 is the first to make an offer.



Preferences

Time preferences (toward agreements at different points in time) are the
driving force of the model.

A bargaining game of alternating offers is

— an extensive game of perfect information with the structure given
above, and

— player ’s preference ordering -over ( ×  )∪ {} is complete and
transitive.

Preferences over  ×  are represented by () for any 0    1

where  is increasing and concave.



Assumptions on preferences

A1 Disagreement is the worst outcome

For any ( ) ∈  ×  ,

( ) % 

for each .

A2 Pie is desirable

— For any  ∈  ,  ∈  and  ∈ 

( ) Â ( ) if and only if   



A3 Time is valuable

For any  ∈  ,  ∈  and  ∈ 

( ) % ( ) if   

and with strict preferences if   0.

A4 Preference ordering is continuous

Let {( )}∞=1 and {( )}∞=1 be members of  ×  for which

lim
→∞ =  and lim

→∞  = 

Then, ( ) % ( ) whenever ( ) % ( ) for all .



A2-A4 imply that for any outcome ( ) either there is a unique  ∈ 

such that

( 0) ∼ ( )

or

( 0) Â ( )

for every  ∈ 

Note %satisfies A2-A4  it can be represented by a continuous function

 : [0 1]×  → R

that is increasing (deceasing) in the first (second) argument.



A5 Stationarity

For any  ∈  ,  ∈  and  ∈ 

( ) Â ( + 1) if and only if ( 0) Â ( 1)

If %satisfies A2-A5 then for every  ∈ (0 1) there exists a continuous
increasing function  : [0 1]→ R (not necessarily concave) such that

( ) = ()



Present value

Define  : [0 1]×  → [0 1] for  = 1 2 as follows

( ) =

(
 if ( 0) ∼ ( )
0 if ( 0) Â ( ) for all  ∈ 

We call ( ) player ’s present value of ( ) and note that

( ) Â ( ) whenever ( )  ( )



If %satisfies A2-A4, then for any  ∈  (· ) is continuous, non de-
creasing and increasing whenever ( )  0.

Further, ( ) ≤  for every ( ) ∈  ×  and with strict whenever
  0 and  ≥ 1.

With A5, we also have that

(( 1) 1) = ( 2)

for any  ∈ .



Delay

A6 Increasing loss to delay

 − ( 1) is an increasing function of .

If  is differentiable then under A6 in any representation () of %


0
()  0(( 1))

whenever ( 1)  0.

This assumption is weaker than concavity of  which implies

0()  0(( 1))



The single crossing property of present values

If %for each  satisfies A2-A6, then there exist a unique pair (∗ ∗) ∈
 × such that

∗1 = 1(
∗
1 1) and 

∗
2 = 2(

∗
2 1)

— For every  ∈ , let () be the agreement for which

1() = 1(1 1)

and define  :  → R by

() = 2 − 2(2() 1)



— The pair of agreements  and  = () satisfies also 2 = 2(2() 1)

 () = 0.

— Note that (0 1) ≥ 0 and (1 0) ≤ 0,  is a continuous function,
and

() = [1(1 1)− 1] +

+[1− 1(1 1)− 2(1− 1(1 1) 1)]

— Since 1(1 1) is non decreasing in 1, and both terms are decreasing
in 1,  has a unique zero by A6.



Examples

[1] For every ( ) ∈  × 

( ) = 

where  ∈ (0 1), and () = 0.

[2] For every ( ) ∈  × 

( ) =  − 

where   0, and () = −∞ (constant cost of delay).

Although A6 is violated, when 1 6= 2 there is a unique pair ( ) ∈
 × such that 1 = 1(1 1) and 2 = 2(2 1).



Strategies

Let  be the set of all sequences {0  −1} of members of .

A strategy of player 1 (2) is a sequence of functions

 = {}∞=0
such that  :  →  if  is even (odd), and  : +1 → {} if 
is odd (even).

The way of representing a player’s strategy in closely related to the notion
of automation.



Nash equilibrium

For any ̄ ∈ , the outcome (̄ 0) is a  when players’ preference
satisfy A1-A6.

To see this, consider the stationary strategy profile

Player 1 proposes ̄
accepts 1 ≥ ̄1

Player 2 proposes ̄
accepts 2 ≥ ̄2

This is an example for a pair of one-state automate.

The set of outcomes generated in the Nash equilibrium includes also delays
(agreements in period 1 or later).



Subgame perfect equilibrium

Any bargaining game of alternating offers in which players’ preferences
satisfy A1-A6 has a unique  which is the solution of the following
equations

∗1 = 1(
∗
1 1) and 

∗
2 = 2(

∗
2 1)

Note that if ∗1  0 and ∗2  0 then

(∗1 0) ∼1 (∗1 1) and (∗2 0) ∼2 (∗2 1)



The equilibrium strategy profile is given by

Player 1 proposes ∗

accepts 1 ≥ ∗1
Player 2 proposes ∗

accepts 1 ≤ ∗1

The unique outcome is that player 1 proposes ∗ in period 0 and player 2
accepts.



Step 1 (∗ ∗) is a 

Player 1:

— proposing ∗ at ∗ leads to an outcome (∗ ∗). Any other strategy
generates either

( ) where 1 ≤ ∗1 and  ≥ ∗

or

(∗ ) where  ≥ ∗ + 1

or .

— Since ∗1  ∗1 it follows from A1-A3 that (
∗ ∗) is a best response.



Player 2:

— accepting ∗ at ∗ leads to an outcome (∗ ∗). Any other strategy
generates either

( ) where 2 ≤ ∗2 and  ≥ ∗ + 1

or

(∗ ) where  ≥ ∗

or .



— By A1-A3 and A5

(∗ ∗) %2 (∗ ∗ + 1)
and thus accepting ∗ at ∗, which leads to the outcome (∗ ∗), is a
best response.

Note that similar arguments apply to a subgame starting with an offer of
player 2.



Step 2 (∗ ∗) is the unique 

Let  be a subgame starting with an offer of player  and define

 = sup{( ) : ( ) ∈ ()}
and

 = inf{( ) : ( ) ∈ ()}

It is suffices to show that

1 = 1 = ∗1 and 2 = 2 = ∗2

It follows that the present value for player 1 (2) of every  of 1 (2)
is ∗1 (

∗
2).



First, we argue that in every  of 1 and 2 the first offer is accepted
because

1(
∗
1 1) ≤ ∗1  ∗1 and 2(

∗
2 1) ≤ ∗2  ∗2

(after a rejection, the present value for player 1 is less than ∗1 and for
player 2 is less than ∗2).

It remains to show that

2 ≥ 1− 1(1 1) (1)

and

1 ≤ 1− 2(2 1) (2)



[1] and the fact that2 ≤ ∗2 imply that the pair (1 1−2) lies below
the line

1 = 1(1 1)

and [2] and the fact that 1 ≤ ∗1 imply that this pair lies to the left of
the line

2 = 2(2 1)

Thus,

1 = ∗1 and 2 = ∗2

and with the role of the players reversed, the same argument shows that
2 = ∗2 and 1 = ∗1



Properties of Rubinstein’s model

[1] Delay (without uncertainty)

Subgame perfection alone cannot not rule out delay. In Rubinstein’s model
delay is closely related to the existence of multiple equilibria.

The uniqueness proof relies only on A1-A3 and A6. When both players
have the same constant cost of delay (A6 is violated), there are multiple
equilibria.

If the cost of delay is small enough, in some of these equilibria, agreement
is not reached immediately. Any other conditions that guarantees a unique
solution can be used instead of A6.



An example

Assume that  = {  } where 1  1  1, the ordering % satisfies
A1-A3 and A5 for  = 1 2, and if ( ) Â ( ) then ( +1) Â ( ).

Then, for each ̄ ∈ , the pair of strategies in which each player insists
on ̄

Player 1 proposes ̄
accepts 1 ≥ ̄1

Player 2 proposes ̄
accepts 2 ≥ ̄2

is a subgame perfect equilibrium.



An example of a subgame perfect equilibrium in which agreement is reached
in period 1 is given by

  

Player 1 proposes   
accepts  and  , , and 

Player 2 proposes  
accepts   and  

where  is the initial state,  and  are absorbing states, and if player 2
rejects  ( or ) then the state changes to  ().

The outcome is that player 1 offers  in period 0, player 2 rejects and
proposes  in period 1 which player 1 accepts.



[2] Patience

The ordering %01 is less patient than %1 if

01(1 1) ≤ 1(1 1)

for all  ∈  (with constant cost of delay 01 ≤ 1).

The models predicts that when a player becomes less patient his negotiate
share of the pie decreases.



[3] Asymmetry

The structure of the model is asymmetric only in one respect: player 1 is
the first to make an offer.

Recall that with constant discount rates the equilibrium condition implies
that

∗1 = 1
∗
1 and 

∗
2 = 2

∗
2

so that

∗ =

Ã
1− 2
1− 12


2(1− 1)

1− 12

!
and ∗ =

Ã
1(1− 2)

1− 12

1− 1
1− 12

!




Thus, if 1 = 2 =  (1 = 2) then

∗ =
µ

1

1 + 




1 + 

¶
and ∗ =

µ


1 + 

1

1 + 

¶
so player 1 obtains more than half of the pie.

By shrinking the length of a period by considering a sequence of games
indexed by ∆ in which  = ∆

  we have

lim
∆→0

∗(∆) = lim
∆→0

∗(∆) =

Ã
log 2

log 1 + log 2


log 1
log 1 + log 2

!
(l’Hôpital’s rule).



Models in which players have outside options

Suppose player 2 has the option of terminating. In this event the outcome
worth  to him and 0 to player 1.

— Case I: can quit only after he rejected an offer, then the game has
unique subgame perfect equilibrium.

— Case II: can quit only after player 1 rejected an offer or after any
rejections, then the game has multiple equilibria.



—  is small: (  (1−) when 1 = 2 = ) no effect on the outcome
of the game (not a credible threat).

—  is large: in case I there is a unique subgame perfect equilibrium in
which the payoff pair is (1− ); in case II there are multiple equilibria.

The “ingredients” of the proofs are the same as in the proof of Rubinstein
(omitted).



Rubinstein’s model with three players

Suppose that the ordering%satisfies A1-A6 for  = 1 2 3; and agreement
requires the approval of all three players.

Then, if (1 1) ≥ 12 for  = 1 2 3 then for every partition ∗ there is
a subgame perfect equilibrium in which immediate agreement is reached
on the partition ∗ (Shaked 1987).



A subgame perfect equilibrium where there is an immediate agreement on
∗ is given by

∗ 


proposes
accepts

∗

 ≥ (
∗
  1)



 ≥ 0


proposes
accepts

∗

 ≥ (
∗
  1)



 ≥ (1 1)

where  is the th unit vector, and if player  proposes   ∗ go to state
 where  6=  is the player with the lower index for whom   12.



The main force holding together the equilibrium is that one of the players
is “rewarded” for rejecting a deviant offer — after his rejection, she/he
obtains all the pie.

The only stationary subgame perfect equilibrium has a form similar to the
unique equilibrium of the two-player game. With a common discount factor
, this equilibrium leads to the division

(  2) where  +  + 2 = 1

Other routs may be taken in order to isolate a unique outcome in the
three-player game.


