Economics 209A Theory and Application of Non-Cooperative Games (Fall 2013)

Extensive games with imperfect information OR 11 and 12, FT 8

Imperfect information

An extensive game with imperfect information

$$\mathsf{\Gamma} = \langle N, H, P, f_c, (\mathcal{I}_i)_{i \in N}, (\succeq_i) \rangle$$

consists of

- a probability measure $f_c(\cdot | h)$ on A(h) for all h such that P(h) = c(chance determines the action taken after the history h), and
- an information partition \mathcal{I}_i of $\{h \in H : P(h) = i\}$ for every $i \in N$ such that

$$A(h) = A(h')$$

whenever $h, h' \in I_i$ (an information set).

Perfect and imperfect recall

Let $X_i(h)$ be player *i*'s experience along the history *h*:

- all I_i encountered,
- actions $a_i \in A(I_i)$ taken at them, and
- the order that these events occur.

An extensive game with imperfect information has perfect recall if for each $i \in N$

$$X_i(h) = X_i(h')$$

whenever $h, h' \in I_i$.

Pure, mixed and behavioral strategies

In an extensive game $\langle N, H, P, f_c, (\mathcal{I}_i)_{i \in N}, (\succeq_i) \rangle$, for player $i \in N$

- a pure strategy assigns and action $a_i \in A(I_i)$ to each information set $I_i \in \mathcal{I}_i$,
- a <u>mixed</u> strategy is a probability measure over the set of pure strategies, and
- a <u>behavioral</u> strategy is a collection of independent probability measures $(\beta_i(I_i))_{I_i \in \mathcal{I}_i}$.

For any $\sigma = (\sigma_i)_{i \in N}$ (mixed or behavioral) an outcome $O(\sigma)$ is a probability distribution over z that results from σ .

Outcome-equivalent strategies

Two strategies (mixed or behavioral) of player *i*, σ_i and σ'_i , are outcome equivalent if

$$O(\sigma_i, s_{-i}) = O(\sigma'_i, s_{-i})$$

for every collection s_{-i} of pure strategies.

In any <u>finite</u> game with perfect recall, any mixed strategy of a player has an outcome-equivalent behavioral strategy (the converse is true for a set of games that includes all those with perfect recall).

Strategies and beliefs

- Under imperfect information, an equilibrium should specify actions and beliefs about the history that occurred (an <u>assessment</u>).
- An assessment thus consists of a profile of behavioral strategies and a belief system (a probability measure for each information set).
- An assessment is <u>sequentially rational</u> if for each information set, the strategy is a best response given the beliefs.

Consistency of the players' beliefs:

- (i) derived from strategies using Bayes' rule
- (ii) derived from some <u>alternative</u> strategy profile using Bayes' rule at information sets that need not be reached
- (*iii*) all players share the same beliefs about the cause of any unexpected event.

Sequential equilibrium

An assessment (β, μ) is sequentially rational if for each $i \in N$ and every $I_i \in \mathcal{I}_i$

$$O(\beta, \mu | I_i) \succeq_i O((\beta'_i, \beta_{-i}), \mu | I_i)$$
 for all β'_i .

 (β, μ) is <u>consistent</u> if there is a sequence $((\beta^n, \mu^n))_{n=1}^{\infty} \to (\beta, \mu)$ such that for each n:

- β^n is completely (strictly) mixed and μ^n is derived from β^n using Bayes' rule.

 (β, μ) is a sequential equilibrium if it is sequentially rational and consistent (Kreps and Wilson, 1982).

<u>OR 219.1</u>

<u>OR 220.1</u>

<u>OR 226.1</u>

<u>OR 227.1</u>

OR 225.1 (Selten's horse)

OR 245.1 (Beer-Quiche)

Trembling hand perfection

A trembling hand perfect equilibrium (THP) of a finite strategic game is a mixed strategy profile α such that there exists $(\alpha^k)_{k=1}^{\infty}$ of completely mixed strategy profiles such that

-
$$(\alpha^k)_{k=1}^\infty$$
 converges to α , and

-
$$\alpha_i \in BR_i(\alpha_{-i}^k)$$
 for each player *i* and all *k*.

A strategy profile α^* in a <u>two-player</u> game is a THP equilibrium iff it is a mixed strategy NE and the strategy of neither player is weakly dominated.

A THP of a finite extensive game is a behavioral strategy profile β that corresponds to a THP of the agent strategic form of the game.

Example (OR 248.1)

	A	B	C
A	0,0	0,0	0,0
B	0,0	1,1	2,0
C	0,0	0,2	2,2

The Nash equilibria (A, A) and (C, C) are not trembling hand perfect equilibria.

Example 1 (OR 249.1)

The Nash equilibrium (B, L, l) is not a trembling hand perfect equilibrium.