Economics 209A

Theory and Application of Non-Cooperative Games
(Fall 2013)

Leftovers

Bayesian equilibrium

A Bayesian game consists of a finite set N of players, a finite set Ω of decision-relevant states (characteristics of players), and for each player $i \in N$

- a set A_{i} of actions
- a finite set T_{i} of types and a signal function $\tau_{i}: \Omega \rightarrow T_{i}$
- a probability measure p_{i} on Ω (prior belief) for which $p_{i}\left(\tau_{i}^{-1}\left(t_{i}\right)\right)>0$ for all $t_{i} \in T_{i}$.
- a preference relation \gtrsim_{i} on the set of probability measure over $A \times \Omega$.
$a^{*} \in \times_{\left(i, t_{i}\right)} A_{i}$ is a Bayes-Nash equilibrium of a Bayesian game

$$
\left\langle N, \Omega,\left(A_{i}\right),\left(T_{i}\right),\left(\tau_{i}\right),\left(p_{i}\right),\left(\gtrsim_{i}\right)\right\rangle
$$

if it is a $N E$ in which the set of players is the set of all pairs $\left(i, t_{i}\right)$ for all $i \in N$ and $t_{i} \in T_{i}$, and for each player $\left(i, t_{i}\right)$

$$
a^{*} \gtrsim\left(i, t_{i}\right) b^{*} \Leftrightarrow L_{i}\left(a^{*}, t_{i}\right) \gtrsim_{i} L_{i}\left(b^{*}, t_{i}\right)
$$

where $L_{i}\left(a^{*}, t_{i}\right)$ is a lottery over $A \times \Omega$ that assigns a probability $\frac{p_{i}(\omega)}{p_{i}\left(\tau_{i}^{-1}\left(t_{i}\right)\right)}$ to

$$
\left(a^{*}\left(j, \tau_{j}(\omega)\right)\right)_{j \in N, \omega} \text { if } \omega \in p_{i}\left(\tau_{i}^{-1}\left(t_{i}\right)\right)
$$

and zero otherwise.

Example: $B o S$ with one-side imperfect information

Then, the expected payoffs of player 1 are given by

	(B, B)		(B, S)	(S, B)
$(S) S$				
	2	$2 p$	$2(1-p)$	0
S	0	p	$1-p$	1

For any belief $p \in(0,1),(B,(B, S))$ is an equilibrium (B is optimal for player 1 given the actions of the two types of player 2 and his beliefs).

Harsanyi (1973)

Consider a game $G=\left\langle N,\left(A_{i}\right),\left(u_{i}\right)\right\rangle$ and let $\left(\epsilon_{i}(a)\right)_{i \in N, a \in A}$ be a collection of random variables with support $[-1,1]$ where

- $\epsilon_{i}=\left(\epsilon_{i}(a)\right)_{a \in A}$ is private information and has well-behaved distribution function, and $\epsilon=\left(\epsilon_{i}\right)_{i \in N}$ are independent.
- The payoff of each player i at the outcome a and state ϵ is $u_{i}(a)+$ $\epsilon_{i}(a)$. This defines a Bayesian game $G(\epsilon)$.

For almost any game G and any collection ϵ^{*}, almost any $\alpha \in N E(G)$ is approachable - associated with the limit as $\gamma \rightarrow 0$ of a sequence of pure strategy equilibria of the Bayesian game $G\left(\gamma \epsilon^{*}\right)$ (and visa versa).

A model of knowledge (OR 5.1-5.2)

Knowledge is formalized such that a player cannot know something that is false (by contrast to beliefs).

An event is common knowledge if

- all players know it,
- all players know that all players know it,
- and so on ad infinitum.

Setup

- Ω - a finite set of states of the world.
$-E \subseteq \Omega$ - an event.
- \mathcal{P} - information function.

A partition of Ω, i.e., a collection of non-empty disjoint subsets of Ω whose union is Ω. The information that a player is assumed to have about the true state.

Example

$$
\Omega=\{1,2,3,4,5,6,7,8,9\}
$$

The information of players a and b are given by

$$
\mathcal{P}^{a}=\{\{1,2,3\},\{4,5\},\{6,7,8\},\{9\}\}
$$

and

$$
\mathcal{P}^{b}=\{\{1,2\},\{3,4,5\},\{6\},\{7,8,9\}\}
$$

Suppose that $\omega=2$ and consider the event

$$
E=\{1,2,3,4\}
$$

- Does a know E ?
- Does b know E ?
- Does a know that b knows E ?
- Does b know that a knows E ?

Given \mathcal{P}^{a} and \mathcal{P}^{b}, when $\omega=2$ the event

$$
G=\{1,2,3,4,5,6\}
$$

is common knowledge.

- a knows G,
- b knows G,
- a knows b knows G,
- b knows a knows G, and so on indefinitely.

Some definitions

- A partition \mathcal{P}^{i} refines another partition \mathcal{P}^{j} if every member of \mathcal{P}^{i} is a subset of a member \mathcal{P}^{j}.
- The meet of two partitions \mathcal{P}^{i} and \mathcal{P}^{j}, denoted by $\mathcal{P}^{i} \wedge \mathcal{P}^{j}$, is a partition of Ω such that \mathcal{P}^{i} and \mathcal{P}^{j} are (the only) refinements of $\mathcal{P}^{i} \wedge \mathcal{P}^{j}$.

Example (continue)

- Given \mathcal{P}^{a} and \mathcal{P}^{b} above, the meet $\mathcal{P}^{a} \wedge \mathcal{P}^{b}$ is the partition

$$
\mathcal{P}^{a} \wedge \mathcal{P}^{b}=\{\{1,2,3,4,5\},\{6,7,8,9\}\}
$$

- This is the unique partition that satisfies the conditions above.

Aumann's common knowledge

Let $\omega \in \Omega$ be the true state and fix some event $E \subseteq \Omega$. Then E is common knowledge (given ω) if and only if

$$
\left(\mathcal{P}^{a} \wedge \mathcal{P}^{b}\right)(\omega) \subseteq E
$$

(E is common knowledge if it contains the member of $\mathcal{P}^{a} \wedge \mathcal{P}^{b}$ that contains ω).

In the above example,

$$
\left(\mathcal{P}^{a} \wedge \mathcal{P}^{b}\right)(\omega)=\{1,2,3,4,5\} \subseteq G=\{1,2,3,4,5,6\}
$$

which implies that event G is common knowledge at $\omega=2$. The idea of the proof can be seen in Figure 1 and Figure 2.

Aumann's agreement theorem (OR 5.3)

Suppose a and b have a common (prior) probability measure p on the set of states Ω (the common prior assumption).

The posterior probabilities of event $E \subseteq \Omega$ when the state is $\omega \in \Omega$ for $i=a, b$ is given by

$$
p\left[E \mid \mathcal{P}^{i}(\omega)\right]=\frac{p\left[E \cap \mathcal{P}^{i}(\omega)\right]}{p\left[\mathcal{P}^{i}(\omega)\right]}
$$

Aumann's theorem: Fix some event $E \subseteq \Omega$ and a state $\omega \in \Omega$. If $p\left[E \mid \mathcal{P}^{a}(\omega)\right]$ and $p\left[E \mid \mathcal{P}^{b}(\omega)\right]$ are common knowledge, then they must be equal. Hence, players cannot agree to disagree!

Proof

- Let $\left(\mathcal{P}^{a} \wedge \mathcal{P}^{b}\right)(\omega)$ be member of the meet of \mathcal{P}^{a} and \mathcal{P}^{b} that contains ω. Since a 's posterior is common knowledge, there is a q such that

$$
\begin{aligned}
& \qquad p(E \mid \pi)=q \\
& \text { for any } \pi \in \mathcal{P}^{a} \subseteq\left(\mathcal{P}^{a} \wedge \mathcal{P}^{b}\right)(\omega) .
\end{aligned}
$$

Proof (continue)

- Since a 's posterior is common knowledge, there is a r such that

$$
p(E \mid \rho)=r
$$

for any $\rho \in \mathcal{P}^{b} \subseteq\left(\mathcal{P}^{a} \wedge \mathcal{P}^{b}\right)(\omega)$.

- Hence,

$$
p\left[E \mid\left(\mathcal{P}^{a} \wedge \mathcal{P}^{b}\right)(\omega)\right]=q \text { and } p\left[E \mid\left(\mathcal{P}^{a} \wedge \mathcal{P}^{b}\right)(\omega)\right]=r
$$

which completes the proof.

A knowledge function

The event that a player knows an event $E \subseteq \Omega$ is given by

$$
K E=\{\omega \in \Omega: \mathcal{P}(\omega) \subseteq E\} .
$$

where $K: 2^{\Omega} \rightarrow 2^{\Omega}$ (the set of all subsets of Ω to itself).

Properties of $K E$
i For any $E \subseteq \Omega, K E \subseteq E$.
ii For any $E, F \subseteq \Omega$, if $E \subseteq F$, then $K E \subseteq K F$.
iii For any $E \subseteq \Omega,(K E)^{c} \subseteq K(K E)^{c}$.

Why?
i If $\omega \in K E$, then $\mathcal{P}(\omega) \subseteq E$. But $\omega \in \mathcal{P}(\omega)$, so $\omega \in E$.
ii If $\omega \in K E$, then $\mathcal{P}(\omega) \subseteq E$. But then $\mathcal{P}(\omega) \subseteq F$ so $\omega \in K F$.
iii If $\omega \in(K E)^{c}$, then $\mathcal{P}(\omega) \nsubseteq E$.
Suppose there exists some $\omega^{\prime} \in \mathcal{P}(\omega) \cap K E$. Then, $\omega^{\prime} \in \mathcal{P}(\omega)$ implies $\mathcal{P}\left(\omega^{\prime}\right)=\mathcal{P}(\omega) \nsubseteq E$, contradicting $\omega^{\prime} \in K E$. Thus, $\mathcal{P}(\omega) \cap$ $K E=\emptyset$, which says that $\mathcal{P}(\omega) \subseteq(K E)^{c}$, or $\omega \in K(K E)^{c}$.

If a (knowledge) function $K: 2^{\Omega} \rightarrow 2^{\Omega}$ satisfies (i)-(iii) then there is a partition \mathcal{P} of Ω such that

$$
K E=\{\omega \in \Omega: \mathcal{P}(\omega) \subseteq E\}
$$

proof (sketch)

- The following properties of K must be shown:

$$
K \Omega=\Omega, K E \subseteq K K E, \text { and } K(E \cap F)=K E \cap K F .
$$

- Then, the following must be shown:
$\omega \in K E$ if and only if $\mathcal{P}(\omega) \subseteq E$, and if $\omega \in \mathcal{P}(\omega)$ and $\omega^{\prime} \in$ $\mathcal{P}(\omega)$, then $\mathcal{P}\left(\omega^{\prime}\right)=\mathcal{P}(\omega)$.

Knowledge and equilibrium (an example)

States

$-\Omega=\Omega_{1} \times \Omega_{2}$ where $\Omega_{i}=[a, b] \subseteq \mathbb{R}$, and the generic element is $\omega=\left(\omega_{1}, \omega_{2}\right)$.

Signals

- $\sigma_{i}(\omega)=\omega_{i}, \forall \omega \in \Omega, i=1,2$ and $\mathbf{P}=\mathbf{P}_{1} \times \mathbf{P}_{2}$ and \mathbf{P}_{i} has no atoms.

Actions and payoffs

$$
u(a, \omega)= \begin{cases}0 & \text { if } a=0 \\ U\left(\omega_{1}, \omega_{2}\right) & \text { if } a=1\end{cases}
$$

- where $U(\omega)$ is a continuous and increasing function and actions are not weakly dominated.

Social beliefs

- An event $\left\{\omega_{i}\right\} \times B_{j t}$, where $\omega_{j} \in B_{j t} \subseteq \Omega_{j}$. It is common knowledge at date t that

$$
\omega \in B_{t}(\omega)=B_{1 t}(\omega) \times B_{2 t}(\omega)
$$

The optimal decision

- Agent i 's expected payoff to action 1

$$
\varphi_{i}\left(\omega_{i}, B_{j t}\right)=E\left[U\left(\omega_{1}, \omega_{2}\right) \mid\left\{\omega_{i}\right\} \times B_{j t}\right\}
$$

is increasing in ω_{i}. The optimal strategy is the cutoff strategy

$$
\begin{aligned}
& \omega_{i}>\omega_{i}^{*}\left(B_{j t}\right) \Longrightarrow \varphi_{i}\left(\omega_{i}, B_{j t}\right)>0 \\
& \omega_{i}<\omega_{i}^{*}\left(B_{j t}\right) \Longrightarrow \varphi_{i}\left(\omega_{i}, B_{j t}\right)<0
\end{aligned}
$$

where ω_{i}^{*} is the history-contingent cutoff.

- The cutoff rule implies that the set $B_{j t}$ is an interval and that

$$
B_{j t+1}(\omega) \subseteq B_{j t}(\omega) \subseteq[a, b]
$$

Claim: Agents must eventually choose the same action.

- By contradiction.

Suppose that for some B and every ω such that $B(\omega)=B$

$$
E\left[U\left(\omega_{1}, \omega_{2}\right) \mid\left\{\omega_{1}\right\} \times B_{2}\right]>0
$$

and

$$
E\left[U\left(\omega_{1}, \omega_{2}\right) \mid B_{1} \times\left\{\omega_{2}\right\}\right]<0 .
$$

- The same action must be optimal for every element in the information set

$$
E\left[U\left(\underline{\omega}_{1}, \omega_{2}\right) \mid\left\{\underline{\omega}_{1}\right\} \times B_{2}\right] \geq 0
$$

and

$$
E\left[U\left(\omega_{1}, \bar{\omega}_{2}\right) \mid B_{1} \times\left\{\bar{\omega}_{2}\right\}\right] \leq 0
$$

where $\underline{\omega}_{1}=\inf B_{1}(\omega)$ and $\bar{\omega}_{2}=\sup B_{2}(\omega)$.
Then

$$
U\left(\underline{\omega}_{1}, \bar{\omega}_{2}\right) \geq 0 \text { and } U\left(\underline{\omega}_{1}, \bar{\omega}_{2}\right) \leq 0 .
$$

If B_{i} for $i=1,2$ is not a singleton, a contradiction. B is a singleton and $U(\omega)=0$ if $\omega \in B$ but the set $\{\omega: U(\omega)=0\}$ has probability zero.

An illustration

$-\sigma_{i}(\omega)=\omega_{i}, \omega_{i}{ }^{\sim} U[-1,1]$, and $U(1, \omega)=\omega_{1}+\omega_{2}$.

- If

$$
-\frac{t-1}{t}>\omega_{1}>-\frac{t-2}{t}
$$

and

$$
\omega_{2}>\frac{t-1}{t}
$$

then $x_{1 s}=0$ and $x_{2 s}=1$ for $s<t$, and $x_{1 s}=x_{2 s}=1$ for $s \geq t$.

Figure 1

Figure 2a

Figure 2b

Does a know that b knows that a knows E ? Here the answer is no!

