Economics 209A Theory and Application of Non-Cooperative Games (Fall 2013)

Supermodular games

Introduction

- Each player's marginal utility of "increasing" his strategy rises with increases of the other players' strategies.
- In such games, the best response correspondences are increasing, so that players' strategies are strategic complements.
- Supermodular games are simple and well-behaved (they have pure strategy Nash equilibrium).

The main ideas

Consider a symmetric *n*-player game in which $s_i \in [0, 1]$ and $\pi(s_i, \overline{s}_{-i})$, where

$$\bar{s}_{-i} \equiv \sum_{j \neq i} \frac{s_j}{n-1}.$$

-
$$\pi(\cdot)$$
 exhibits positive spillovers if $\pi(s_i, \overline{s}_{-i})$ is increasing in \overline{s}_{-i} .

- $\pi(\cdot)$ exhibits strategic complementarities (increasing first differences) if $\pi(s'_i, \bar{s}_{-i}) - \pi(s_i, \bar{s}_{-i})$ is increasing in \bar{s}_{-i} for all $s'_i > s_i$.
- A symmetric Nash equilibrium (SNE) is an action $s^* \in [0, 1]$ such that $\pi(s^*, s^*_{-i}) \ge \pi(x, s^*_{-i})$ for all $s \in [0, 1]$.

<u>Claim</u>: (Weak) strategic complements are necessary over some range for multiple symmetric Nash equilibrium.

- By contradiction. Suppose that $\pi(\cdot)$ satisfies (strictly) decreasing first differences and that $s^*, s^{**} \in SNE$ s.t. $s^* < s^{**}$
- Then, the equilibrium conditions implies

$$\pi(s^{**},s^*) - \pi(s^*,s^*) \le 0$$

and decreasing first differences implies

$$\pi(s^{**}, s^{**}) - \pi(s^{*}, s^{**}) < 0$$

which contradicts the assumption that s^{**} is a SNE.

The strategic-form game

Consider a set N of players, and for each player $i \in N$

- a non-empty set $S_i \subset \mathbb{R}^{\ell_i}$ of actions (not necessarily compact and convex).
- a utility function $u_i : S \to \mathbb{R}$ where $S = \times_{j \in N} S_j \subset \mathbb{R}^{\ell}$ and $\ell \equiv \sum_{i \in N} \ell_i$ is the set of possible outcomes.

Lattices

Let \mathbb{R}^K denote the finite K-dimensional vector space and let \geq denote the usual partial (vector) ordering on \mathbb{R}^K , that is, for any $x, y \in \mathbb{R}^K$,

$$x \ge y \Longleftrightarrow x_k \ge y_k$$

for all k = 1, ..., K, and we also write $x > y \iff x \ge y$ and $x \ne y$.

The <u>meet</u> (resp. join) of x and y is denoted by $x \wedge y$ (resp. $x \vee y$) and defined by

$$x \wedge y = (\min(x_1, y_1), ..., \min(x_K, y_K)),$$

and

$$x \lor y = (\max(x_1, y_1), ..., \max(x_K, y_K)).$$

A sub-lattice of a lattice (partially ordered set) L is a nonempty subset of L which is a lattice with the same meet and join operations as L.

S is a sub-lattice of \mathbb{R}^{ℓ} if $s \in S$ and $s' \in S$ implies that $s \wedge s' \in S$ and $s \vee s' \in S$.

The sub-lattice S has a greatest (resp. least) element $\overline{s} \in S$ (resp. $\underline{s} \in S$) if $\overline{s} \geq s$ (resp. $\underline{s} \leq s$) for all $s \in S$.

Increasing differences

The notion of increasing differences formulizes the notion of strategic complementarily:

 $u_i(s_i, s_{-i})$ exhibits increasing differences if $u_i(s'_i, s'_{-i}) - u_i(s_i, s'_{-i}) \ge u_i(s'_i, s_{-i}) - u_i(s_i, s_{-i})$

whenever

$$s'_i \ge s_i \text{ and } s'_{-i} \ge s_{-i},$$

and exhibits strictly increasing differences when the inequalities are strict.

That is, an increase in the strategies of the other players raises the desirability of playing a higher strategy for player i.

Supermodularity

 $u_i(s_i, s_{-i})$ is <u>supermodular</u> in s_i if for each s_{-i} $u_i(s_i, s_{-i}) + u_i(s'_i, s_{-i}) \le u_i(s_i \land s'_i, s_{-i}) + u_i(s_i \lor s'_i, s_{-i})$ for all $s_i, s'_i \in S_i$, and <u>strictly supermodular</u> when the inequalities are strict.

<u>Remark I</u>: supermodularity is always satisfied if s_i and s'_i can be ordered by \geq , so the strength of supermodularity applies to cases where s_i and s'_i cannot be so ordered. <u>Remark II</u>: supermodularity ensures that increasing first differences implies strategic complementarity.

If $u_i(s_i, s_{-i})$ exhibits increasing differences but is not supermodular in s_i , then the best response need not be monotonically non-decreasing in the other players' strategies.

To prove that u_i exhibits increasing differences, let $s'_i \ge s_i$ and $s'_{-i} \ge s_{-i}$, where $s_{-i}, s'_{-i} \in s_{-i}$ and $s_i, s'_i \in s_i$. Let $u = (s_i, s'_{-i})$ and $v = (s'_i, s_{-i})$. Then the definition of supermodularity implies that

$$u_i(u \lor v) + u_i(u \land v) \ge u_i(u) + u(v)$$

which can be written

$$u_i(s'_i, s'_{-i}) + u_i(s_i, s_{-i}) \ge u_i(s_i, s'_{-i}) + u(s'_i, s_{-i}).$$

Rearranging,

$$u_i(s'_i, s'_{-i}) - u_i(s_i, s'_{-i}) \ge u(s'_i, s_{-i}) - u_i(s_i, s_{-i}).$$

A supermodular game

A supermodular game is such that, for each $i \in N$,

 S_i is sub-lattice in \mathbb{R}^{ℓ} , u_i has increasing differences in (s_i, s_{-i}) , and u_i is supermodular in s

$$u_i(s) + u_i(s') \le u_i(s \land s') + u_i(s \lor s')$$
 for all $s, s' \in S$.

<u>Remark III</u>: Supermodularity in s_i is implied by supermodularity in s (let $s = (s_i, s_{-i}), s' = (s'_i, s'_{-i})$, and $s_{-i} = s'_{-i}$).

Next, we give conditions for supermodularity in terms of derivatives of the payoff function u_i :

- (Topkis) If $S_i = \mathbb{R}^{\ell}$ and u_i is C^2 in s_i , then u_i is supermodular in s_i if and only if for each s_{-i}

$$\frac{\partial^2 u_i}{\partial s_{ik} \partial s_{ij}} (s_i, s_{-i}) \ge 0 \text{ for all } k, j = 1, ..., \ell.$$

– If $S = \mathbb{R}^{\ell n}$ and u_i is C^2 , then u_i is supermodular if and only if

$$\frac{\partial^2 u_i}{\partial s_k \partial s_j}(s) \ge 0 \text{ for all } k, j = 1, ..., \ell n.$$

<u>Proof</u>: Let $e_k = (0, ..., 0, 1, 0, ..., 0)$ be an ℓn -vector with the unit in the k-th place, and let $u = (s + \varepsilon e_k)$ and $v = (s + \eta e_j)$ for $k \neq j$ and $\varepsilon, \eta > 0$. Supermodularity of u_i implies that

$$u_i(u) + u(v) \leq u_i(u \lor v) + u_i(u \land v).$$

Substituting,

$$u_i(s + \varepsilon e_k) + u(s + \eta e_j) \le u_i(s + \varepsilon e_k + \eta e_j) + u_i(s)$$

which implies that

$$\varepsilon \eta \frac{\partial^2 u_i}{\partial s_k \partial s_j}(s) \ge 0.$$

as required.

Examples

<u>Cournot game</u>: suppose $N = 1, 2, q_i = [0, \bar{q}_i]$, and $u_i(q_i, q_j) = q_i P_i(q_i, q_j) - C_i(q_i)$ where the inverse demand functions $P_i(q_i, q_j)$ are C^2 , $P_i + q_i \partial P_i / \partial q_i$ is decreasing in q_i , and $C_i(q_i)$ is differentiable.

If $s_1 \equiv q_1$ and $s_2 \equiv -q_2$ then $\partial^2 u_i / \partial s_i \partial s_j \ge 0$ for all $i \neq j$. Thus, the game is supermodular.

Note: an increase in the strategy of player 2 reduces his output and this encourages player 1 to increase his output and his strategy.

Bertrand game: consider an oligopoly with demand functions

$$D_i(p_i,p_{-i}) = a_i - b_i p_i + \sum_{j \neq i} d_{ij} p_j$$
 where $b_i > 0$ and $d_{ij} > 0$.

Let
$$u_i(p_i, p_{-i}) = (p_i - c_i)D_i(p_i, p_{-i}).$$

Then,

$$\frac{\partial^2 u_i}{\partial p_i \partial s_j} \geq \mathbf{0}$$

for all $i, j \neq i$.

<u>Search</u>: consider a matching technology $p(e, e^*) = ee^*$ – the probability of being matched with another player when the player being matched takes effort $e \in [0, 1]$ and the average effort of the other players is e^* . The cost of effort is $c(e) = e^2/2$.

The strategy set [0, 1] is a sub-lattice of \mathbb{R} and the payoff function $u(e, e^*) = ee^* - e^2/2$ has increasing first differences:

$$u(e, e^*) - u(\tilde{e}, e^*) = (e - \tilde{e})e^* - e^2/2 + \tilde{e}^2/2$$

is increasing in e^* when $e > \tilde{e}$. Because the strategy e is a scalar, the payoff function u is automatically supermodular in e.

<u>Bank run</u>: let $s_i = 0$ (resp. $s_i = 1$) represents a decision of player i to withdraw (resp. delay withdrawal). The payoff function $u_i(s)$ can be written

$$u_i(s) = (1 - s_i) + s_i R(\alpha(s)),$$

where

$$R(lpha(s)) = \left\{ egin{array}{cc} r > 1 & ext{if } lpha(s) \leq arlpha \\ 0 & ext{if } lpha(s) > arlpha \end{array}
ight.$$

and $\alpha(s) = \sum_{i \in N} (1 - s_i)/n$ is the proportion of players who withdraw.

The set of strategy profiles is $S = \{0, 1\}^n$, which is easily seen to be a sub-lattice of \mathbb{R}^n .

Supermodularity of u_i in s_i follows automatically because s_i is one-dimensional. Also, $s_i > \tilde{s}_i$ implies $s_i = 1$ and $\tilde{s}_i = 0$, so

$$u_i(s_i, s_{-i}) - u_i(\tilde{s}_i, s_{-i}) = R(\alpha(s_i, s_{-i})) - 1.$$

Clearly, $R(\alpha(s_i, s_{-i}))$ is non-increasing in $\alpha(s_i, s_{-i})$ and $\alpha(s_i, s_{-i})$ is decreasing in s_{-i} , so u_i exhibits increasing first differences.

Applications of supermodularity

Supermodular games derive their interest from the following result (Tarski, 1951):

If S is non-empty, compact sub-lattice of \mathbb{R}^{ℓ} and $f: S \to S$ is such that $f(x) \leq f(y)$ if $x \leq y$, then f has a fixed point s.t. $x^* = f(x^*)$ (i.e. f cannot "jump down").

Tarski's theorem is relevant since the set $BR(s_{-i})$ is a non-empty, compact sub-lattice and increases in s_{-i} .

 $u_i: S \to \mathbb{R}$ is upper semi-continuous (u.s.c.) in s_i if $\limsup_{q} u_i(s_i^q, s_{-i}) \le u_i(s_i^0, s_{-i}),$ for any $s_{-i} \in S_i$ and any sequence $\{s_i^q\}$ in S_i such that $\lim_{q} s_i^q = s_i^0$.

Intuitively, $u_i(s_i, s_{-i})$ can jump up as s_i changes, but cannot jump down (a maintained assumption).

<u>Result I</u>: $BR_i(s_{-i})$ is non-empty and compact for every $s_{-i} \in S_{-i}$.

- Pick $s_{-i} \in S_{-i}$ and consider a sequence $\{s_i^q\}$ in S_i such that

$$\lim_{q} u_i(s_i^q, s_{-i}) = \sup\{u_i(s_i, s_{-i}) | s_i \in S_i\}.$$

Since S_i is compact, the sequence $\{s_i^q\}$ has a convergent subsequence with limit s_i^0 and WLOG we can use the same notation to denote the subsequence. Then u.s.c. implies that

 $\sup \{u_i(s_i, s_{-i}) | s_i \in S_i\} = \lim_q u_i(s_i^q, s_{-i}) \le u_i(s_i^0, s_{-i}) < \infty.$ Thus, $s_i^0 \in BR_i(s_{-i})$ as required.

- Suppose that $\{s_i^q\}$ is a sequence in $BR_i(s_{-i})$ for some fixed $s_{-i} \in S_{-i}$. Since S_i is compact, $\{s_i^q\}$ has a convergent subsequence with a limit $s_i^0 \in S_i$.
- WLOG, take $\{s_i^q\}$ to be the convergent subsequence. The u.s.c. of u_i in s_i implies that

$$\lim_{q} u_i(s_i^q, s_{-i}) \le u_i(s_i^0, s_{-i}),$$

so $s_i^0 \in BR_i(s_{-i}).$

Thus, BR_i(s_{-i}) is closed and BR_i(s_{-i}) ⊂ S_i shows that it is bounded, so BR_i(s_{-i}) is compact as claimed.

<u>Result II</u>: $BR_i(s_{-i})$ is a sub-lattice of S_i for any $s_{-i} \in S_{-i}$.

- The proof is by contradiction. Suppose that $s_i, s'_i \in BR_i(s_{-i})$ for some $s_{-i} \in S_{-i}$ and that $s_i \wedge s'_i \notin BR_i(s_{-i})$, that is

$$u_i(s_i \wedge s'_i, s_{-i}) < u_i(s_i, s_{-i}) = u_i(s'_i, s_{-i}).$$

– Supermodularity in s_i implies that

$$u_i(s_i \lor s'_i, s_{-i}) + u_i(s_i \land s'_i, s_{-i}) \ge u_i(s_i, s_{-i}) + u_i(s'_i, s_{-i}).$$

The two inequalities together imply that

$$u_i(s_i \wedge s'_i, s_{-i}) > u_i(s_i, s_{-i}) = u_i(s'_i, s_{-i}),$$

contradicting the assumption that s_i and s'_i are best responses (the proof that $s_i \vee s'_i \in BR_i(s_{-i})$ is similar).

<u>Result III</u>: (i) for every $s_{-i} \in S_i$, $BR_i(s_{-i})$ has a greatest element $\overline{BR}_i(s_{-i})$ (by Zorn's Lemma), and (ii) \overline{BR}_i is monotonically non-decreasing, that is, for any $s_{-i}, s'_{-i} \in S_{-i}$,

$$s_{-i} \leq s'_{-i} \Longrightarrow \overline{BR}_i(s_{-i}) \leq \overline{BR}_i(s'_{-i}).$$

- Suppose that $s_{-i}, s'_{-i} \in S_{-i}, s_{-i} \leq s'_{-i}, s_i \in \overline{BR}_i(s_{-i})$ and $s'_i \in \overline{BR}_i(s'_{-i})$. Supermodularity in s_i implies that

$$u_i(s_i \vee s'_i, s'_{-i}) + u_i(s_i \wedge s'_i, s'_{-i}) \ge u_i(s_i, s'_{-i}) + u_i(s'_i, s'_{-i}),$$

and thus

$$u_i(s_i \vee s'_i, s'_{-i}) - u_i(s'_i, s'_{-i}) \ge u_i(s_i, s'_{-i}) - u_i(s_i \wedge s'_i, s'_{-i}).$$

- Since $s_i \in \overline{BR}_i(s_{-i})$, increasing first differences implies that $u_i(s_i \lor s'_i, s'_{-i}) - u_i(s'_i, s'_{-i}) \ge u_i(s_i, s_{-i}) - u_i(s_i \land s'_i, s_{-i}) \ge 0$ - But, since $s'_i \in \overline{BR}_i(s'_{-i})$, $u_i(s_i \lor s'_i, s'_{-i}) - u_i(s'_i, s'_{-i}) = 0$, so $s_i \lor s'_i \in \overline{BR}_i(s'_{-i})$.

- If s'_i is the largest element in $BR_i(s'_{-i})$ then $s'_i \ge s_i \lor s'_i$, which implies that $s'_i \ge s_i$.

Lattice properties of the fixed point set

<u>Result IV</u>: the function $\overline{BR}(\cdot) \equiv \overline{BR}_1(\cdot) \times ... \times \overline{BR}_n(\cdot)$ mapping S into S has a fixed point.

Result V (Topkis 1979): if the game is supermodular and, for each player i, S_i is compact and u_i is u.s.c. in s_i for each s_{-i} , then the set of pure-strategy Nash equilibria is non-empty and contains greatest and least elements, \overline{s} and \underline{s} , respectively.

Result VI (Vives 1990): if the game is <u>strictly</u> supermodular and, for each player i, S_i is compact and u_i is u.s.c. in s_i for each s_{-i} , then the set of pure strategy Nash equilibria is a non-empty, complete sub-lattice.

(a sub-lattice is <u>complete</u> if the sup \lor and inf \land of *every* subset belongs to the sub-lattice).

Concluding, supermodular are <u>well-behaved</u>:

- pure-strategy equilibria,
- upper (and lower) bound of each player's equilibrium strategies.
- the upper and lower bounds of the sets of Nash equilibria and rationalizable strategies coincide (Milgrom and Roberts, 1990).

Repeated games

A repeated game is not supermodular even if the stage game on which it is based is supermodular. For example, consider the 2×2 coordination game:

If we adopt the convention that $a_1 < a_2$ and $b_1 < b_2$ then this is a game with increasing first differences (and hence a supermodular game).

Suppose this game is played T+1 periods, and the payoff from the repeated game is simply the undiscounted sum of the payoffs in each of the stage games.

Consider the following strategy-pair: (a_1, b_2) in the first stage game, and in each subsequent game (b_1, b_2) if (a_1, b_2) is the outcome in the first stage and (a_1, b_1) otherwise. This pair of strategies constitutes a subgame perfect equilibrium of the repeated game. Now consider the payoffs for player 1 that result from different outcomes in the first stage game:

Outcome	Payoff
(a_1, b_1)	1+T
(a_2, b_1)	0 +T
(a_1, b_2)	0 + 4T
(a_2, b_2)	4 + T

The gain to player 1 from increasing his action from a_1 to a_2 is -1 when player 2 chooses b_1 and 4 - 3T when player 2 chooses b_2 . Thus, an increase in player 2's action <u>reduces</u> the first difference of player 1 for T sufficiently large.