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Supermodular games



Introduction

• Each player’s marginal utility of “increasing” his strategy rises with in-
creases of the other players’ strategies.

• In such games, the best response correspondences are increasing, so that
players’ strategies are strategic complements.

• Supermodular games are simple and well-behaved (they have pure strategy
Nash equilibrium).



The main ideas

Consider a symmetric -player game in which  ∈ [0 1] and ( ̄−),
where

̄− ≡
P
 6=



− 1


— (·) exhibits positive spillovers if ( ̄−) is increasing in ̄−.

— (·) exhibits strategic complementarities (increasing first differences)
if (0 ̄−)− ( ̄−) is increasing in ̄− for all 0  .

— A symmetric Nash equilibrium () is an action ∗ ∈ [0 1] such
that (∗ ∗−) ≥ ( ∗−) for all  ∈ [0 1].



Claim: (Weak) strategic complements are necessary over some range for
multiple symmetric Nash equilibrium.

— By contradiction. Suppose that (·) satisfies (strictly) decreasing first
differences and that ∗ ∗∗ ∈  s.t. ∗  ∗∗

— Then, the equilibrium conditions implies

(∗∗ ∗)− (∗ ∗) ≤ 0

and decreasing first differences implies

(∗∗ ∗∗)− (∗ ∗∗)  0

which contradicts the assumption that ∗∗ is a .



The strategic-form game

Consider a set  of players, and for each player  ∈ 

— a non-empty set  ⊂ R of actions (not necessarily compact and
convex).

— a utility function  :  → R where  = ×∈ ⊂ R and  ≡P
∈  is the set of possible outcomes.



Lattices

Let R denote the finite -dimensional vector space and let ≥ denote
the usual partial (vector) ordering on R, that is, for any   ∈ R,

 ≥  ⇐⇒  ≥ 

for all  = 1 , and we also write    ⇐⇒  ≥  and  6= .

The meet (resp. join) of  and  is denoted by  ∧  (resp.  ∨ ) and
defined by

 ∧  = (min(1 1) min( )) 

and

 ∨  = (max(1 1) max( )) 



A sub-lattice of a lattice (partially ordered set)  is a nonempty subset of
 which is a lattice with the same meet and join operations as .

 is a sub-lattice of R if  ∈  and 0 ∈  implies that  ∧ 0 ∈  and
 ∨ 0 ∈ .

The sub-lattice  has a greatest (resp. least) element ̄ ∈  (resp.  ∈ )
if ̄ ≥  (resp.  ≤ ) for all  ∈ .



Increasing differences

The notion of increasing differences formulizes the notion of strategic com-
plementarily:

( −) exhibits increasing differences if

(
0
 

0
−)− ( 

0
−) ≥ (

0
 −)− ( −)

whenever

0 ≥  and 
0
− ≥ −

and exhibits strictly increasing differences when the inequalities are strict.

That is, an increase in the strategies of the other players raises the desir-
ability of playing a higher strategy for player .



Supermodularity

( −) is supermodular in  if for each −

( −) + (
0
 −) ≤ ( ∧ 0 −) + ( ∨ 0 −)

for all  0 ∈ , and strictly supermodular when the inequalities are
strict.

Remark I: supermodularity is always satisfied if  and 0 can be ordered
by ≥, so the strength of supermodularity applies to cases where  and 0
cannot be so ordered.



Remark II: supermodularity ensures that increasing first differences implies
strategic complementarity.

If ( −) exhibits increasing differences but is not supermodular in ,
then the best response need not be monotonically non-decreasing in the
other players’ strategies.



To prove that  exhibits increasing differences, let 0 ≥  and 0− ≥
−, where − 0− ∈ − and  

0
 ∈ . Let  = ( 

0
−) and

 = (0 −). Then the definition of supermodularity implies that

( ∨ ) + ( ∧ ) ≥ () + ()

which can be written

(
0
 

0
−) + ( −) ≥ ( 

0
−) + (0 −)

Rearranging,

(
0
 

0
−)− ( 

0
−) ≥ (0 −)− ( −)



A supermodular game

A supermodular game is such that, for each  ∈  ,

 is sub-lattice in R,  has increasing differences in ( −), and
 is supermodular in 

() + (
0) ≤ ( ∧ 0) + ( ∨ 0) for all  0 ∈ 

Remark III: Supermodularity in  is implied by supermodularity in  (let
 = ( −) 0 = (0 

0
−) and − = 0−).



Next, we give conditions for supermodularity in terms of derivatives of the
payoff function :

— (Topkis) If  = R and  is 2 in , then  is supermodular in 
if and only if for each −

2


( −) ≥ 0 for all   = 1  

— If  = R and  is 2, then  is supermodular if and only if

2


() ≥ 0 for all   = 1  



Proof: Let  = (0  0 1 0  0) be an -vector with the unit in the
-th place, and let  = ( + ) and  = ( + ) for  6=  and
   0. Supermodularity of  implies that

() + () ≤ ( ∨ ) + ( ∧ )

Substituting ,

(+ ) + (+ ) ≤ (+  + ) + ()

which implies that


2


() ≥ 0

as required.



Examples

Cournot game: suppose = 1 2,  = [0 ̄], and ( ) = ( )−
() where the inverse demand functions ( ) are2, +
is decreasing in , and () is differentiable.

If 1 ≡ 1 and 2 ≡ −2 then 2 ≥ 0 for all  6= ̇. Thus, the
game is supermodular.

Note: an increase in the strategy of player 2 reduces his output and this
encourages player 1 to increase his output and his strategy.



Bertrand game: consider an oligopoly with demand functions

( −) =  −  +
P
 6= 

where   0 and   0 .

Let ( −) = ( − )( −)

Then,

2


≥ 0

for all   6= .



Search: consider a matching technology ( ∗) = ∗ — the probability
of being matched with another player when the player being matched takes
effort  ∈ [0 1] and the average effort of the other players is ∗. The cost
of effort is () = 22.

The strategy set [0 1] is a sub-lattice ofR and the payoff function ( ∗) =
∗ − 22 has increasing first differences:

( ∗)− (̃ ∗) = (− ̃)∗ − 22 + ̃22

is increasing in ∗ when   ̃. Because the strategy  is a scalar, the
payoff function  is automatically supermodular in .



Bank run: let  = 0 (resp.  = 1) represents a decision of player 
to withdraw (resp. delay withdrawal). The payoff function () can be
written

() = (1− ) + (())

where

(()) =

(
  1 if () ≤ ̄
0 if ()  ̄

and () =
P
∈ (1− ) is the proportion of players who withdraw.



The set of strategy profiles is  = {0 1}, which is easily seen to be a
sub-lattice of R.

Supermodularity of  in  follows automatically because  is one-dimensional.
Also,   ̃ implies  = 1 and ̃ = 0, so

( −)− (̃ −) = (( −))− 1

Clearly, (( −)) is non-increasing in ( −) and ( −) is
decreasing in −, so  exhibits increasing first differences.



Applications of supermodularity

Supermodular games derive their interest from the following result (Tarski,
1951):

If  is non-empty, compact sub-lattice of R and  :  →  is such that
() ≤ () if  ≤ , then  has a fixed point s.t. ∗ = (∗) (i.e. 
cannot “jump down”).

Tarski’s theorem is relevant since the set(−) is a non-empty, compact
sub-lattice and increases in −.



 :  → R is upper semi-continuous (u.s.c.) in  if

lim sup

(


  −) ≤ (

0
  −)

for any − ∈  and any sequence {} in  such that lim 

 = 0 .

Intuitively, ( −) can jump up as  changes, but cannot jump down
(a maintained assumption).



Result I: (−) is non-empty and compact for every − ∈ −.

— Pick − ∈ − and consider a sequence {} in  such that

lim

(


  −) = sup{( −)| ∈ }

Since  is compact, the sequence {} has a convergent subsequence
with limit 0 and WLOG we can use the same notation to denote the
subsequence. Then u.s.c. implies that

sup{( −)| ∈ } = lim (

  −) ≤ (

0
  −) ∞

Thus, 0 ∈ (−) as required.



— Suppose that {} is a sequence in (−) for some fixed − ∈
−. Since  is compact, {} has a convergent subsequence with a
limit 0 ∈ .

— WLOG, take {} to be the convergent subsequence. The u.s.c. of 
in  implies that

lim

(


  −) ≤ (

0
  −)

so 0 ∈ (−).

— Thus,(−) is closed and(−) ⊂  shows that it is bounded,
so (−) is compact as claimed.



Result II: (−) is a sub-lattice of  for any − ∈ −.

— The proof is by contradiction. Suppose that  0 ∈ (−) for
some − ∈ − and that  ∧ 0 ∈ (−), that is

( ∧ 0 −)  ( −) = (
0
 −)

— Supermodularity in  implies that

( ∨ 0 −) + ( ∧ 0 −) ≥ ( −) + (
0
 −)

The two inequalities together imply that

( ∧ 0 −)  ( −) = (
0
 −)

contradicting the assumption that  and 0 are best responses (the
proof that  ∨ 0 ∈ (−) is similar).



Result III: ( ) for every − ∈ , (−) has a greatest element
(−) (by Zorn’s Lemma), and ( )  is monotonically non-decreasing,
that is, for any − 0− ∈ −,

− ≤ 0− =⇒ (−) ≤ (
0
−)

— Suppose that − 0− ∈ −, − ≤ 0−,  ∈ (−) and 0 ∈
(

0
−). Supermodularity in  implies that

( ∨ 0 
0
−) + ( ∧ 0 

0
−) ≥ ( 

0
−) + (

0
 

0
−)

and thus

( ∨ 0 
0
−)− (

0
 

0
−) ≥ ( 

0
−)− ( ∧ 0 

0
−)



— Since  ∈ (−), increasing first differences implies that

( ∨ 0 
0
−)− (

0
 

0
−) ≥ ( −)− ( ∧ 0 −) ≥ 0

— But, since 0 ∈ (
0
−),

( ∨ 0 
0
−)− (

0
 

0
−) = 0

so  ∨ 0 ∈ (
0
−).

— If 0 is the largest element in (
0
−) then 

0
 ≥ ∨0, which implies

that 0 ≥ .



Lattice properties of the fixed point set

Result IV: the function (·) ≡ 1(·)× ×(·) mapping  into
 has a fixed point.

Result V (Topkis 1979): if the game is supermodular and, for each player
,  is compact and  is u.s.c. in  for each −, then the set of
pure-strategy Nash equilibria is non-empty and contains greatest and least
elements, ̄ and , respectively.



Result VI (Vives 1990): if the game is strictly supermodular and, for each
player ,  is compact and  is u.s.c. in  for each −, then the set of
pure strategy Nash equilibria is a non-empty, complete sub-lattice.

(a sub-lattice is complete if the sup∨ and inf ∧ of every subset belongs
to the sub-lattice).



Concluding, supermodular are well-behaved:

— pure-strategy equilibria,

— upper (and lower) bound of each player’s equilibrium strategies.

— the upper and lower bounds of the sets of Nash equilibria and rational-
izable strategies coincide (Milgrom and Roberts, 1990).



Repeated games

A repeated game is not supermodular even if the stage game on which it
is based is supermodular. For example, consider the 2 × 2 coordination
game:

1 2
1 1 1 0 0
2 0 0 4 4

If we adopt the convention that 1  2 and 1  2 then this is a game
with increasing first differences (and hence a supermodular game).



Suppose this game is played +1 periods, and the payoff from the repeated
game is simply the undiscounted sum of the payoffs in each of the stage
games.

Consider the following strategy-pair: (1 2) in the first stage game, and
in each subsequent game (1 2) if (1 2) is the outcome in the first
stage and (1 1) otherwise. This pair of strategies constitutes a sub-
game perfect equilibrium of the repeated game.



Now consider the payoffs for player 1 that result from different outcomes
in the first stage game:

Outcome Payoff
(1 1) 1 + 
(2 1) 0 + 
(1 2) 0 + 4
(2 2) 4 + 

The gain to player 1 from increasing his action from 1 to 2 is −1 when
player 2 chooses 1 and 4 − 3 when player 2 chooses 2. Thus, an
increase in player 2’s action reduces the first difference of player 1 for 
sufficiently large.


