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Quantal Response Equilibrium (QRE)

• Players do not choose best response with probability one (as in Nash equi-
librium).

• Players choose responses with higher expected payoffs with higher proba-
bility — better response instead of best responses.

• Players have rational expectations and use the true mean error rate when
interpreting others’ actions.



• Modify Nash equilibrium to incorporate realistic limitations to rational
choice modeling of games.

• Provide a statistical framework (structural econometric approach) to ana-
lyze game theoretic data (field and laboratory).

• If Nash had been a statistician, he might have discovered QRE rather then
Nash equilibrium — Colin Camerer —



In practice, QRE often uses a logit payoff response function:

Pr(ai) =
exp[λ

P
a−i∈A−i Pr(a−i)ui(ai,a−i)]P

a0
i
∈Ai

exp[λ
P

a−i∈A−i Pr(a−i)ui(a
0
i,a−i)]

.

The choice of action becomes purely random as λ→ 0, whereas the action
with the higher expected payoff is chosen for sure as λ→∞.



• QRE does not abandon the notion of equilibrium, but instead replaces
perfectly with imperfectly, or noisy, rational expectations.

• Players estimate expected payoffs in an unbiased way (expectations are
correct, on average).

• As such, QRE provides a convenient statistical structure for estimation
using either field or experimental data.



Normal-form games

Consider a finite n-player game in normal form:

— a set N = {1, ..., n} of players,

— a strategy set Ai = {ai1, ..., aiJi} consisting of Ji pure strategies for
each player i ∈ N ,

— a utility function ui : A → R, where A =
Q
i∈N Ai for every player

i ∈ N .



Let ∆i be the set of probability measures on Ai:

∆i = {(pi1..., piJi) :
P
ij pij = 1, pij ≥ 0}

where pij = pi(aij).

The notation (aij, p−i) represents the strategy profile where i adopts aij
and all other players adopt their components of p = (pi, p−i).

A profile p = (p1, ..., pn) is a Nash equilibrium if for all i ∈ N and all
p0i ∈ ∆i

ui(p) ≥ ui(p
0
i, p−i).



Let Xi = Rji represent the space of possible payoffs for strategies that i
can adopt and let X =

Q
i∈N Xi.

Then, define the function ū : ∆→ X by

ū(p) = (ūi(p), ..., ūn(p)),

where

ūij(p) = ui(aij, p−i).



A quantal response equilibrium

A version of Nash equilibrium where each player’s payoff for each action is
subject to random error. Specifically:

[1] For each player i and each action j ∈ {1, ..., Ji}, and for any p ∈ ∆ ,
let

ûij(p) = ūij(p) + ij

where player i error vector i = ( i1, ..., iJi) is distributed according
to a joint PDF fi( i).

f = (f1, ..., fn) is admissible if, for each i, the marginal distribution
of fi exists for each ij and E( i) = 0.



[2] For any ū = (ū1, ..., ūn) with ūi ∈ Rji for each i, define the ij-
response set Rij ⊆ Rji by

Rij(ūi) = { i ∈ Rji : ūij(p) + ij ≥ ūik(p) + ik∀k = 1, .., Ji},

that is, given p, Rij(ūi(p)) specifies the region of errors that will lead
i to choose action j.

[3] Let the probability that player i will choose action j given ū be equal

σij(ūi) =
Z

Rij(ūi)

f( )d .



The function σi : Rji → ∆Ji is called the quantal response function (or
statistical reaction function) of player i.

Let G = hN,A, ui be a normal form game, and let f be admissible. A
QRE of G is any π ∈ ∆ such that

πij = σij(ūi(π))

for all i ∈ N and 1 ≤ j ≤ Ji.



The quantal response functions

Properties of quantal response functions σij:

[1] σ ∈ ∆ is non empty.

[2] σi is continuous in Rji.

[1] and [2] imply that for any game G and for any admissible f , there
exists a QRE.



[3] σij is monotonically increasing in ūij.

[4] If, for each player i and every pair of actions j, k = 1, .., Ji, ij and

ik are i.i.d., then

ūij ≥ ūik =⇒ σij(ū) ≥ σik(ū)

for all i and all j, k = 1, .., Ji.

[4] states that σi orders the probability of different actions by their expected
payoffs.



A logit equilibrium

For any given λ ≥ 0, the logistic quantal response function is defined, for
xi ∈ Rji, by

σij(xi) =
exp(λxij)PJi
k=1 exp(λxik)

,

and the QRE or logit equilibrium requires

πij(xi) =
exp(λūij(π))PJi
k=1 exp(λūik(π))

for each i and j.



Result I: Let σ be the logistic quantal response function; {λ1, λ2, ...} be
a sequence such that limt→∞ λt = ∞; {p1, p2, ...} be a corresponding
sequence with pt ∈ π∗(λt) for all t where

π∗(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩π ∈ ∆ : πij =
exp(λūij(π))

JiP
k=1

exp(λūik(π))

∀i, j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
is the logit correspondence.

Then, p∗ = limt→∞ pt is a Nash equilibrium.



Proof: Assume p∗ is not a Nash equilibrium. Then, there is some player
i ∈ N and some pair aij and aik with p

∗(aik) > 0 and

ui(aij, p
∗
−i) > ui(aik, p

∗
−i) or ūij(p

∗) > ūik(p
∗).

Since ū is a continuous function, there exists some small and T , such
that for all t ≥ T ,

ūij(p
t) > ūik(p

t) + .

But as t→∞, σk(ūi(pt))/σj(ūi(pt))→ 0 and thus pt(aik)→ 0, which
contradicts p∗(aik) > 0.



Result II: For almost any game G:

[1] π∗(λ) is odd for almost all π.

[2] π∗ is UHC.

[3] The graph of π∗ contains a unique branch which starts at the centroid,
for λ = 0, and converges the a unique NE, as λ→∞.

[3] implies that QRE defines a unique selection from the set of Nash equi-
librium (the “tracing procedure” of Harsanyi and Selten, 1988).



Example I

Consider the game

L M R
U 1, 1 0, 0 1, 1
M 0, 0 0, 0 0, B
D 1, 1 A, 0 1, 1

where A > 0 and B > 0.

The game has a unique THP (D,R), and the NE consists of all mixtures
between U and D (resp. L and R) for player 1 (resp. 2).

The limit logit equilibrium selects p = (12, 0,
1
2) and q = (12, 0,

1
2) as the

limit point.



QRE for example I with A=B=5 
 

 



QRE for example I with A=B=100 
 

 



Example II

Consider the game

R L
T x, 1 1, 2
B 1, 2 2, 1

All limit points are Nash equilibria but not all Nash equilibria are limit
points (refinement). Computable in small finite games (Gambit).



QRE for example II 
Properties of the QRE correspondence 

 



QRE for example II 
Own-payoff Effects 

 



Relation to Bayesian equilibrium

In a Bayesian game (Harsanyi 1973), i is viewed as a random disturbance
to player i’s payoff vector.

Suppose that for each a ∈ A, player i has a disturbance ij added to
ui(aij, a−i) and that each ij is i.i.d. according to f .

Harsanyi (1973) assumes a separate disturbance i(a) for i’s payoff to each
strategy profile a ∈ A, whereas here

ij(aij, a−i) = ij(aij, a
0
−i)

for all ij and all a−i, a0−i ∈ A−i.



QRE inherits the properties of Bayesian equilibrium:

[1] An equilibrium exists.

[2] Best responses are “essentially unique” pure strategies.

[3] Every equilibrium is “essentially strong” and is essentially in pure strate-
gies.



Example - monotone games

• A monotone game is an extensive-form game with simultaneous moves and
an irreversibility structure on strategies.

• It captures a variety of situations in which players make partial commit-
ments.

• We characterize conditions under which equilibria result in efficient out-
comes.

• The game has many equilibrium outcomes so the theory lacks predictive
power.



The game

• An indivisible public project with cost K and N players, each of whom has
an endowment of E tokens.

• The players simultaneously make irreversible contributions to the project
at a sequence of dates t = 1, ..., T .

• The project is carried out if and only if the sum of the contributions is
large enough to meet its cost.

• If the project is completed, each player receives A tokens plus to the
number of tokens retained from his endowment.



[1] The aggregate endowment is greater than the cost of the project (com-
pletion is feasible)

NE > K.

[2] The aggregate value of the project is greater than the cost (completion
is efficient)

NA > K.

[3] The project is not completed by a single player (either it is not feasible
or it is not rational)

min {A,E} < K.



The static game

The game is essentially the same as the static game in which all players
make simultaneous binding decisions.

Proposition (one-shot) ( i) There exists a pure-strategy Nash equilib-
rium with no completion. Conversely, there exists at least one pure-
strategy equilibrium in which the project is completed with probability
one. ( ii) The game also possesses mixed-strategy equilibria in which
the project is completed with positive probability.

The indivisibility of the public project makes each contributing player “piv-
otal” (Bagnoli and Lipman (1992)).



The extensive-form game

The sharpest result is obtained for the case of pure-strategy sequential
equilibria.

Proposition (pure strategy) Suppose that A > E and T ≥ K. Then, under
the maintained assumptions, in any pure strategy sequential equilibrium of
the game, the public project is completed with probability one.

In any pure strategy equilibrium, the probability of completion is either
zero or one, so it is enough to show that the no-completion equilibrium is
not sequential.



Mixed strategies expand the set of parameters for which there exists a
no-completion equilibrium.

Proposition (mixed strategy) Suppose that A > E and T ≥ K. Then
there exists a number A∗(E,K,N, T ) such that, for any E < A < A∗

there exists a mixed strategy equilibrium in which the project is completed
with probability zero.

The use of mixed strategies in the continuation game can discourage an
initial contribution and support an equilibrium with no completion.



The games in which K = NE provide a useful benchmark (no possibility
of taking a free ride on the contributions of other players).

Proposition (no-free-riding) Suppose that K = NE, A > E and T ≥
K. Then the project is completed with probability one in any sequential
equilibrium of the game.

The result does not rule out the use of mixed strategies, even along the
equilibrium path.



Taking K = NE as a benchmark for the absence of free riding, the
free-rider problem must be worse when the total endowment exceeds this
level.

Proposition (free-riding) Suppose that E > A and T ≥ K. Then under the
maintained assumptions, there exists a pure strategy sequential equilibrium
of the game in which the public project is completed with probability zero.

The essential ingredient in the construction of this equilibrium is the self-
punishing strategy employed by Gale (2001).



Symmetric Markov perfect equilibrium (SMPE)

The class of SMPE takes a relatively simple form. The main predictions
from SMPE can be summarized by four facts:

— There are no pure strategy SMPE, although mixed strategies may only
be used off the equilibrium path.

— There is no completion of the public project in early periods when A
“high” and no completion at all when A “low.”

— The contribution probability at each state when A is “high” is at least
as high as when A is “low.”

— A game with horizon T < T 0 is isomorphic to a continuation game
starting in period T 0 − T of the game with horizon T 0.



Example 1

A = 3, E = 1,K = 2, N = 3, T = 5

τ/n 0 1

4 0.00 −−
3 0.00 0.00
2 0.00 0.00
1 0.56| 0.55| 0.00 0.00
0 0.00| 0.21| 0.79 0.67

where n is the total number of contributions and τ is the number of periods
remaining after the current period.



Example 2

A = 1.5, E = 1,K = 2, N = 3, T = 5

τ/n 0 1

4 0.00 −−
3 0.00 0.00
2 0.00 0.00
1 0.00 0.00
0 0.00 0.33



Example 3

A = 3, E = 2,K = 2, N = 3, T = 5

τ/(n, ni) 0 (1, 0) (1, 1)

4 0.00 −− −−
3 0.00 0.00 0.00
2 0.00 0.00 0.00
1 0.50| 0.48| 0.00 0.00 0.00
0 0.00| 0.21| 0.79 0.42 0.42

where ni is the total number of contributions to date by player i.



Example 4

A = 1.5, E = 2,K = 2, N = 3, T = 5

τ/(n, ni) 0 (1, 0) (1, 1)

4 0.00 −− −−
3 0.00 0.00 0.00
2 0.00 0.00 0.00
1 0.00 0.00 0.00
0 0.00 0.21 0.21

The Markov property reduces the set of sequential equilibria, sometimes
substantially.



Equilibrium outcomes

• The SMPE explains the qualitative patterns of contributions in the game.

• The other results on provision rates are all consistent with the qualitative
predictions of the SMPE.

• The deviations from the SMPE contribution probabilities at earlier and
later periods go in opposite directions.

• QRE replicates the tendency of early contributions in games, which could
not be captured by the SMPE.



τ / n 0 1 2
4 0.09 (270)
3 0.08 (207) 0.11 (38) 0 (2)
2 0.11 (165) 0.07 (54) 0.25 (8)
1 0.37 (117) 0.07 (76) 0.10 (10)
0 0.36 (36) 0.60 (94) 0.08 (24)

τ / n 0 1 2
1 0.18 (270)
0 0.62 (159) 0.54 (54) 0 (9)

( ) - # of obs.

A =3, E =1, K =2, N =3

Frequencies of contribution



τ / n 0 1 2
4 0.09 (270)
3 0.05 (207) 0.03 (36) 0 (3)
2 0.06 (177) 0.06 (54) 0.25 (4)
1 0.26 (144) 0.19 (70) 0.17 (6)
0 0.20 (57) 0.48 (88) 0.09 (23)

τ / n 0 1 2
1 0.18 (270)
0 0.35 (150) 0.33 (64) 0 (7)

( ) - # of obs.

A =1.5, E =1, K =2, N =3



τ / n (0,0) (1,0) (1,1)
4 0.14 (270)
3 0.03 (165) 0.02 (52) 0.12 (26)
2 0.07 (153) 0.04 (50) 0.08 (25)
1 0.3 (126) 0.08 (60) 0 (30)
0 0.53 (45) 0.46 (84) 0.26 (42)

τ / n 0 1 2
1 0.34 (270)
0 0.44 (75) 0.34 (70) 0.11 (35)

( ) - # of obs.

A =3, E =2, K =2, N =3



τ / n (0,0) (1,0) (1,1)
4 0.06 (270)
3 0.05 (228) 0.09 (22) 0.00 (11)
2 0.13 (195) 0.05 (40) 0.15 (20)
1 0.21 (126) 0.07 (70) 0.00 (35)
0 0.04 (63) 0.39 (92) 0.07 (46)

τ / n (0,0) (1,0) (1,1)
1 0.26 (270)
0 0.13 (111) 0.38 (70) 0.00 (35)

( ) - # of obs.

A =1.5, E =2, K =2, N =3



A (n,τ ) h (1) h (2) h (3) h (4) p -value
(1,2) 0.03 (34) 0.10 (20) – – 0.63

1.5 (1,1) 0.06 (32) 0.25 (16) 0.32 (22) – 0.05
(1,0) 0.54 (28) 0.25 (8) 0.30 (10) 0.52 (42) 0.30
(1,2) 0.00 (30) 0.17 (24) – – 0.07

3 (1,1) 0.00 (30) 0.06 (18) 0.14 (28) – 0.21
(1,0) 0.47 (30) 0.75 (18) 0.60 (20) 0.64 (28) 0.27

A (n,τ ) h (1) h (2) h (3) h (4) p -value
(1,2) 0.56 (18) 0.45 (22) – – 0.25

1.5 (1,1) 0.00 (10) 0.05 (20) 0.10 (40) – 0.50
(1,0) 0.50 (10) 0.33 (18) 0.47 (32) 0.31 (32) 0.12
(1,2) 0.05 (44) 0.00 (6) – – 0.10

3 (1,1) 0.11 (38) 0.00 (6) 0.06 (16) – 0.60
(1,0) 0.43 (30) 0.67 (6) 0.57 (14) 0.41 (34) 0.53

The relative frequencies of contributions from the different histories

E =2, K= 2, N =3, T =5

E =1, K= 2, N =3, T =5



Quantal Response Equilibrium (QRE)

For simplicity, suppose that each player has an endowment of one token
(E = 1).

The contribution behavior of each uncommitted player at state (n, τ) fol-
lows a binomial logit distribution:

λ(n,τ) =
1

1 + exp(−β(n,τ)∆(n,τ))
,

where ∆(n,τ) is the difference between the expected payoffs from con-
tributing and not contributing, and β(n,τ) is a coefficient.

The calculation of QRE proceeds by backward induction, beginning with
the final period.



τ / n 0 1 2
4 0.11
3 0.14 0.07 0.00
2 0.18 0.10 0.00
1 0.20 0.17 0.00
0 0.75 0.65 0.00

τ / n 0 1 2
1 0.19
0 0.76 0.65 0

β = 10.51 (1.27), Log_lik = -278.55

QRE estimation results and the probability of contribution
A =3, E =1, K =2, N =3

β=10.05 (0.78), Log_lik =-472.52



τ / n 0 1 2
4 0.08
3 0.09 0.06 0.00
2 0.12 0.08 0.00
1 0.19 0.13 0.00
0 0.00 0.36 0.00

τ / n 0 1 2
1 0.4
0 0.3 0.42 0.09

β = 2.26 (0.20), Log_lik = -296.41

A =1.5, E =1, K =2, N =3

β=12.34 (0.83), Log_lik =-475.01



The predicted (QRE) and empirical contribution probabilities
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The predicted (QRE) and empirical contribution probabilities
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