Appendix VIII
The generalized kinked specification

We continue to assume that state 2 has an objectively known probability my = %, whereas states 1
and 3 occur with unknown probabilities 71 and 73. The utility of a portfolio x = (x1, z2, z3) takes
the the following form:

I 2o < Tmin
adu(zs) + 0du(Tmin) + aiu(Tmax)

I 2min <22 < Tmax
a%u(l‘min) + a%u(:ng) + ozgu(:rmax)

III. Zmax < @2
a?u(mmin) + agu@:max) + agu(a:?)

where Zpyin = min{z, 23} and Tp.x = max{zy,z3}. This formulation (equation 3) embeds the
kinked specification (equation 1) as a special case. At the end of this note, we show that, through a
suitable change of variables, the generalized kinked specification can also be interpreted as reflecting
Recursive Nonexpected Utility (RNEU) where the ambiguity is modeled as an equal probability
that m = % or T3 = % We begin by deriving the optimality conditions.

[1] Parameter restrictions

[1.1] Consistency
When x9 = xmin, consistency requires that

(a1 + 03) u (Tmin) + AU (Tmax) = (o + @3) U (Tmin) + A3 (Tmax) -
Without loss of generality we can assume that
o&+oz%+oz§ :a%+a§+a§,
in which case the equation preceding the last implies that
(O& + Oé%) [U (Tmin) — U (Tmax)] = (a% + 0‘%) [u (#min) — ¢ (Tmax)]

or
1 1 2 2
oy + g = o + aj.

Similarly, when xo = xmax consistency requires that
a%—l—a% :ag—l—ag.
We further normalize the coefficients so that

a{+ag+a§:1for all j.



This leads to the following;:

[1.2] Reparametrization
Let

1 1 1
aj =3y, oy +ag = B,

2 __ 3 3 _
o =3, a1 + oy = fy.
Using the consistency conditions, the original coefficients are reparametrized as follows:

1 1 1

a; =3y, ag =By — 1, az=1— [,
2 2 2

aj =3, a5 = By — B3, a3 =1— [,
3 3 3

011:537 012:54—537 043:1—54-

Note that 5; < 8y < 1, B3 < 5 and 3 < 4. The utility of a portfolio x = (z1,x2,x3) can be
written with parameters (1, ..., B4:

L X2 < Tmin

Bru(z2) + (B2 — B1) w(@min) + (1 — B2) u(Tmax)

I1. Tmin S ) S Tmax

B3u(Tmin) + (B2 — B3) u(z2) + (1 — B3) u(Tmax)

III. Zmax < 22

53u($min) + (/34 - /83) u<xmax) + (1 - 64) u(a:Q)

We adopt a simpler three-parameter model, in which the parameter § measures the ambiguity
attitudes, the parameter v measures pessimism/optimism, and p is the coefficient of absolute risk
aversion. The mapping from the two parameters 6 and ~ to the four parameters 3y, ..., 84 is given
by the equations

1
ﬂ1—§+7

2
,82:§+'Y+5

1
,83:§+’Y+(5

2
/84_§+77

with —% < b,y < % and —% <o+ < %SO that the decision weight attached to each payoff in

equation 3 is nonnegative.



[2] Optimal solutions

By the symmetry property between z; and xz3, we know that z; < x3 if and only if p; > ps.
We can use this fact to identify the price of Tpin as pmax = max {p1, p3}. Similarly, we can identify
the price of Tmax as Pmin = min {p1,p3}. For the rest of the note, we denote

T; = Tin and T; = Tyax,
Pi = Pmax and Pj = Pmin-

The maximization of the generalized kinked utility function can be broken down into three
sub-problems:

e SP1: 25 <z

mgx(éJrv)u(m)Jr <é+5>u(x¢)+ <%—v—5>u($j)

st. prx=1,2; —x; >0 and z; —x2 > 0.

e SP2: T, <10 < Zj

m3x<é+7+5>u(:ci)+ (%)u(x2)+ <%—7—5>U(%‘)

st. p-x=1,z; —22>0and z3 —x; > 0.

e SP3: z; <@

m3x<%+~y+a>u(xi)+ (%—5>u<xj)+ <%—’y>u(x2)

st.p-x=1,2; —x; >0, and 22 —x; > 0.

We adopt the CARA utility function u(x) = —%e*pm. Instead of characterizing the exact
conditions of prices and model parameters that tell which sub-problem the optimal solution of
demands belongs to, we can adopt the following two-step algorithm computing a (globally) optimal
demand:

Step 1 Given a price vector p and parameter values (9,7, p), compute a (locally) optimal solution
in each of the three sub-problems.

Step 2 Compare the utilities of locally optimal solutions of three sub-problems and choose one
yielding the highest utility as a (globally) optimal solution of demand.

In what follows, we characterize optimal demand with conditions on parameters in each sub-
problem. Due to the fact that the CARA utility function generates a boundary solution for
certain price vectors, we first set up the Lagrangian function for optimal solutions without the
non-negativity condition of demand and impose that condition later, for computational ease.



[2.]_] SP1: €T S ZT;
The Lagrangian function without the non-negativity condition of demand is given by

L(x)= <%+7> u(xe) + <é+6> u(x;) + (% —’7—5> u ()
+A1 (zi — 22) + A2 (75 — 2;) + p (1 — p171 — pawa — P3x3) .

The necessary conditions for the maximization problem are given by

1
£209 = (5 7) exp{=pra} = A~ =0,

1
L; (X) = <§ + 5> exp{—pxz-} + A1 — Ao —up; =0,

1
Lj(x)= <§ -y - 5) exp{—pz;} + A2 — pup; =0,
)\1 (LE‘Z —1132):0:)\2 (l‘j _1171'),)\1 2 0,)\2 2 0,

x; —we 20,25 —x; >0,
1 =piz1 + pax2 + p3x3, v > 0.

[2.1.1] A1 >0and Ag >0
This implies that z] = 235 = a:;‘ Then the optimal demand is given by

1

===
! 2 3 p1+p2 +p3

For the parameter conditions leading to this solution, we need to check the following:

1
<§ + 7) exp (—pxa) > ppa,

1
<§ -y - 5) exp (—px;) < ppj,

2
<§ +v+ 5) exp (—pz;) > p (p2 + i) ,

(% _ 7) exp (—pz;) < p(p1 + ps)

which yields the following inequality conditions under the optimal solution:
1

Dj 3—7—90

1
1n< b2 ><1n §+7 ,
p1+Dp3 5=

2

; z )

Dj 5—7—90

4




[2.1.2] Ay =0 and A\ >0
This implies that 7 = 2§ > 5. The solution without non-negativity condition is given by

. 1 (p1 + p3) ( D2 > 3+7
Ty = — n —In| 3 )
p1+p2+ps  p(p1+p2+ps3) p1+Dp3 55—
1 3+
ri=ua5 = + b2 n< b2 )—ln —‘3 7
pr+p2+ps  p(p1+p2+ps3) p1+Dp3 57

The inequality conditions for this solution are given by

If 25 > 0, then the optimal demand is

o 1 __ (m+p3) n< P2 )—ln 3+
2 p1+p2+p3 p(pr+p2+p3) p1+ p3 §_7 )
1 1
p1+p2+ps  p(p1+p2+ps3) p1+p3 £—n

If 25 < 0, then the optimal demand is given by

1
P2+ p3

x5 =0 and 2] = 25 =

[2.1.3] Ay >0and A2 =0
This implies that x5 = 2] < x;‘ The solution without non-negativity condition is given by

<p2 + pi> 343
n —In (34—
0 1= =0
(Pz + pi) F+7+9
n{——|—-In|4+——
Pj 3—7—90

The inequality condition for this solution is given by

, 2

In (M) >ln [ &——
pj
In <p_2> <In
bi

5

r _ 1 N P
pr+p2+p3  p(p1+p2+p3)

)

p1+p2+p3 p(p1+p2+p3)

wl—  wol—|eol

++ 1|+
=2 2|2

I |+

: SR )
N——

W=
(<%
N~



If 25 = 27 > 0, the optimal demand will be the same as above:
. 1 B 2 n<m+m>_m 24v+6
p1+p2+ps  p(p1+p2+ps) D) %_7_5

<p2+pz') §+’Y+5
n{——m— —hl i
pj g—V—5

o 1 P2 + i
T pi+p2a+ps p(p1+p2+Dp3)

If 25 = 27 <0, the optimal demand will be

1
zy =z; =0and 2} = —.
Dy

[2.1.4] \y =0and Ay =0
This implies that 7 > z7 > x3. The solution without non-negativity condition is given by
1 Pi

<p2> %7“7
- n|=)—-In{+
prt+p2+ps p(pr+p2+ps) pi 149

1
n<p—2>—ln 7134_7 ,
bj 3—7—0

o 1 P2 +pj
‘' pi+p2+ps p(p1+p2+p3)

1
n<p_2>_ln 3ty )|
Dy 3—7—0

b pir+pe+ps p(pr+p2+p3)

1
n<p—2>—ln l?)i )
bj 5—7—5

If the non-negativity condition for each asset is satisfied, then the above solution is the optimal
demand from the problem with the non-negativity condition of demands. Otherwise, we need to
further refine the problem by setting an asset violating the non-negativity condition to be zero.
There are two cases to consider: (i) z3 < xf <0, (i7) 25 < 0 and = > 0.

Ty =

Pj
p(p1+p2 +ps3)

Dj
p(p1 + p2 + p3)

p2 + pi
p (p1 + p2 + p3)

(1) e <z} <0

The optimal solution is then given by

* * *
z; = — and z3 = 27 = 0.
Dj

(i1) x5 <0 and zf >0



The solution to the problem by imposing that x5 = 0 is given by
‘ 1.5
In <&> —In IL 7
bj 3—7—90
‘ 1.5
In <&> —1In IL .
bj 3—7—90

If > 0, then the solution with x5 = 0 is the optimal one in the original problem with the
non-negativity condition of demands:

1 .
7} b

Tpi+ps p(p1+p3)

2 = 1 + Di
p1+p3 p(p1+p3)

J

/ /
ry = 0,27 = 7; and z = ;.

If 2} < 0, then the optimal solution is given by

1
zy =z; =0and zj = —.
Dj

[2.2] SP2: z; <y < z;
The Lagrangian function without the non-negativity condition of demand is given by

£ =(5+7+0)ut@)+(3)ue) + (5-7-9) uta)

+A1 (25 — w2) + A2 (w2 — 2;) + p (1 — prw1 — paza — p3x3) .

The necessary conditions for the maximization problem are given by

1
L;(x)= <§ + v+ 5) exp (—pz;) — A2 — up; =0,

1

Lo (x)= (= ] exp(—pr2) — A1 + Ao — up2 = 0,
3

Lj(x)= <% —7—5> exp (—px;) + A1 — pp; = 0,
0=2MX2 (x2 — i) = A1 (zj — x2) , A1 > 0,2 >0,
xj—x220,20 —x; >0,
p>0,1—pix1 — paxe — psz3 = 0.

[2.2.1] Ay >0 and Ay >0
This implies that x7 = 23 = 2. Thus, the optimal demand is given by
1

===
! 2 3 p1 +p2 +p3



We need to check the following parameter conditions for the optimal demand:

1
<§ + v+ 5) exp{—pxi} > UPi,

1
(5-—7-—5>exp{—p@ﬁ<<upp

2
<§ +y+ 5) exp{—p&?g} > U (pi +p2) s

<§ - 6) exp{—px2} < p(p2 +pj) -

Then we have the following inequality conditions for model parameters:
) 1
m<&><m ER
by
In ( Dbi >
D2 + pj
n (pi +p2> <In
by

+
2
I+
| >

A
=

Wl wIny WIN[Wl—= W=
+ 0|+
2|2 22 2
||+
ShHI S
N——

I+
Sl &>
~_

[2.2.2] A1 =0and A2 >0
This implies that 3 = 27 < 7. The optimal demand without the non-negativity condition is

given by

<p¢ + p2> FHy+0
n —In | 4¥———
pj 3—7—0
<m+m> FH+d
n|———|-In|4——
Pj 3—7—90

The parameter condition for this solution is given by

In (M) N
Dj
In <&> <In[<*+—7F—
2]

If 25 = =7 > 0, then the above solution is the optimal one from the original maximization problem.
Otherwise, the optimal solution with the non-negativity condition is given by

2 pL+p2+ps  p(p1+p2+p3)

(2 )

T pr4+pe+ps p(p1+p2+p3)

wWl—= ol felho

+ 1|+
w2 2 (2
I |+

(SR e
N——

+
(«%)
N————

zy=x; =0and z; = —.
Pj



[2.2.3] /\1 > 0 and /\2 =0
This implies that 7 = 235 > 2. The optimal demand without the non-negativity condition is

given by
< pi ) gy +9
n —In 5 &
D2 + pj §—y—9

< pi > sty +9
n —hl 5 &
P2 + pj 5—7—9

The parameter condition for this solution is given by

. 1 )
n( p’l >>ln g—i_i s
D2 + pj §—7—9
1
ln<]2><ln 1; .
pj 3—7—5

If 27 > 0, the optimal demand from the original problem will be the same as above. Otherwise,
the optimal demand with the non-negativity condition is

o 1 i
T: =Ty = +
pr+p2+p3  p(p1+p2+p3)

i

o 1 __ DP2tp
" opi+p2+ps p(pr+p2+p3)

7 pa+pj

z; =0and 25 =

[2.2.4] )\1 =0 and )\2 =0
This implies that 7 > 25 > z7. The optimal solution without the non-negativity condition is
1 .
. (p2 + p])

given by
_ | (m) THY+6
ES - n|—)—-—In|*—7—
pr+p2+p3  p(p1+p2+p3) P2 3

1
ln<@>—ln 2; ,
bj 3—7—90

Dy
p (p1 + p2 + p3)

1 : 1 )
.’I};: =+ pi ln<&>—ln 3+’1}/+
pr+p2+p3 p(p1+p2+p3) P2 3
1
bj P2 3
! o (2) -0 ()],
p (p1 +p2 + p3) P 2_y-9

pr+p2+p3 p(p1+p2+p3)

() (=)

If the non-negativity condition for each asset is satisfied, then the above solution is the optimal
demand from the problem with the non-negativity condition of demands. Otherwise, we need to
further refine the problem by setting an asset violating the non-negativity condition to be zero.
There are two cases to consider: (i) z} < x5 <0, (i1) 2} <0 and =5 > 0.

D;i + P2
p (p1 + p2 + p3)




(1) xf <a3 <0

The optimal solution is then given by

(it) ¥ <0 and 25 >0

By imposing that =] = 0, we have the new solution as
1
n (@) —In | —— ],
pPj 37— J
1
3
[R— ’7/ —

If 2, > 0, then the optimal demand from the original problem will be

; 1 bj
Th= —
p2+p;  p(p2+0p))

/ 1 D2
p2+p;  p(p2+p))

xf = 0,25 = 25 and z} = .
If 2, < 0, then the optimal demand will be

¥

;=z3=0and 2} = —.

bj

[2.3] SP3: z; < x9
The Lagrangian function without the non-negativity condition is given by

£(x)=<%+7+5)u(xi)+ <%—5>u(xj)+ (%—’y)u(azg)

+A1 (22 — 25) + A2 (25 — 23) + p (1 — p1wy — pawa — P3x3) .

The necessary conditions for the maximization problem are given by

1
L;(x)= <§ +v+ 5) exp (—px;) — A2 — up; =0,

1
Lj(x)= (g - 5) exp (—pz;) — A1+ A2 — up; =0,

1
Ly (x) = (5 - 7) exp (—pz2) + A1 — pp2 = 0,

0:)\1 (mg—a:j) :>\2 (a:j—a:i),)\l,)\g 20,
pw>0and 1 —pix; — paxs — p3x3 = 0.

10



[2.3.1] A1 >0and Aa >0
This implies that 25 = z

= z7. The optimal solution from the original problem is then given
by
* * * 1
T = X9 = Tz =

p1+p2+p3
The parameter conditions for this solution are given by

. 1 5
In <pz><1n (yi—i ,
2] 3~

37

=) =)
/N /7 N
s} s}
= [\V)
E‘Jr +|=
s 3
N —
A\ A\
=) =)
/N N
Wl
I |+
L2 2
~

Wiy wlNojwol—
I |+

2

I |+

: STY %
N——

[2.3.2] A1 =0and A2 >0

This implies that zj = 27 < z3. The optimal solution without the non-negativity condition is
given by

« x 1 P2 p1+ D3 2+

T] =Tz = — In —In{ 3 ,
p1+p2+ps  p(p1+p2+ps3) p2 37

1 (p1 +p3) n<p1+p3>_ln v

> pi+pe+ps p(pL+p2tops) p2

37
The parameter conditions for this solution are given by

2
ln(m_+p3>>1n iy
P2 37
1
‘ 1 5
ln<&><ln 300
P; 30

If 27 = 25 > 0, then the optimal solution from the original problem is the same as above. Otherwise,
the optimal demand with the non-negativity condition is given by

1
] =25 =0and =i = —.
1 3 2= 0
[2.3.3] A1 >0and A =0

This implies that z3 = 27 > 2. The optimal demand without the non-negativity condition is
given by

L 1 __ (p2+py) m( pi )—m 3+7+0
p1+p2+p3  p(p1+p2+ps) P2+ p; —%_7_5 ,
1 : : T+v+0
Ty =25 = + b n< b >—ln — 1 .
p1+p2+ps  p(p1+p2+ps3) p2 + pj 24—

11



The parameter condition for this solution is given by
. 1 )
In ( Pi > >1n & ,
p2 + pj —v=94
; -0
In <p—j> <In| 3 .
D2 37

If 7 > 0, then the optimal demand from the original problem is the same as above. Otherwise,
the optimal demand with the non-negativity condition is given by

wl—= WIN

1
p2+p;

*_

* X
z; =0 and x5 = ;

[2.3.4] )\1 =0 and )\2 =0
The conditions imply that x5 > x
condition is given by

*

7> x;. The optimal demand without the non-negativity

(m 3Hr+9
n(=)—In{3q+——
D2 37

_ 1 Pi
Ty = +
p1+p2+p3 p(pr+p2+p3)

1
: : 15
+ bi n(p—J>—ln i‘ ,
p(p1+p2 + p3) P2 3=
1 : : $+7+6
x;= + bi n(& —In 31#
p1+p2+ps  p(p1+p2+p3) P2 3=
(p2 +pi)

() ()]

o 1 _ (p2+py)
" pit+pet+ps p(p1+p2+ps)

. 1_5
n (p_3> —1In i?’ .
D2 37
If the non-negativity condition for each asset is satisfied, then the above solution is the optimal
demand from the problem with the non-negativity condition of demands. Otherwise, we need to

further refine the problem by setting an asset violating the non-negativity condition to be zero.
There are two cases to consider: (i) z} <} <0, (it) 27 <0 and z} > 0.

~p(p1+p2+p3)

Pj
+
p (p1+ p2 + p3)

(i) =7 <27 <0

Then the optimal solution from the original problem is given by



(¢4) z; <0and 2} >0

By imposing that =7 = 0, we have the following new solution as
1
; 5—0
n (p_]> —1In % ,
D2 73—
1
; 5—0
n (p_]> —1In i?’ .
D2 5=

If ZL‘; > 0, then the optimal demand from the original problem is given by

1 pj
+
p2+p;  p(p2+p;)

T =

o 1 p2
x; = —
p2+p;  pp2+p;)

!/

x __ 1
5 and x5 = 2.

* *
r; =0,z =x

If x; < 0, then the optimal demand from the original problem is given by

1
x] =x3=0and 25 = —.
D2

[2.4] Non-uniqueness of the optimal demand

Finally we note that when § < 0 and/or v < 0, the optimal demand is not unique when
pr = prr for some k # k' = 1,2,3 because the generalized kinked utility function is not quasi-
convex everywhere. Nevertheless, the utility function is not quasi-convex in each sub-problem. The
above characterization of the optimal demands incorporates the cases of non-uniqueness.
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[3] Recursive Nonexpected Utility (RNEU)

Finally, we show that the generalized kinked specification can also be interpreted as reflecting
a special case of RNEU where there is an equal probability that w1 = % or g = % Consider
the following two-stage recursive Rank-Dependent Utility (RDU) model. Given a fixed underlying
distribution 7 = (71, w2, 73), the first-stage rank-dependent expected utility Vi is given by

Viz.10)®) = [1 = w(z)max{u(z1), u(x2)} + w(3) minfu(z1), u(z2)},

Vio.1,2)(x) = [1 = w(z) max{u(wy), u(ws)} + w(3) min{u(w), u(ws)}.
The second stage takes the rank-dependent expectation of the first-stage rank-dependent expected
utilities:

and the decision weights can be expressed as follows:

Br= w(%)a
By — 1= w(%)[l - w(%)]v
By = w(%)w(%),
Ba— B3 = [1 - w(z)lw(z)

Now consider the three relevant cases:

L X2 < Tmin

Rearranging,

U(X) = ﬁlu(-%?) + (52 - /83) u(xmin) + (1 - /82)u(xmax)-
II. Zmin < 72 < Tmax

U(x) = [1 = w(@)] {[1 - w(z)]u(@max) + w(z)ul=2)}
+w(z) {[1 - w(z)lu(@z) +w(3)u(@mn) } -

NI

Rearranging,
U(x) = Bau(@min) + (B2 — B3)u(w2) + (1 — B2)u(Tmax)-
I zmax < 22
U(x ) [1 —w(3)] {[1 - (%)] (z2) +w(z)u(Tmax) }
{1 — w()]u(z2) + w(F)w(@min) } -

Rearranging,

U(x) = B3u(Tmin) + (B4 — B3) u(Tmax) + (1 — By)u(z2).
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