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Abstract

This paper combines behavioral economics and social learning. Over-
confident agents overweigh their private information relative to the
public information revealed by the decisions of others. Therefore, when
following a herd, they broadcast more of the information available
to them. However, overconfidence trades the additional information
revealed by overconfident decisions against more information that is
being suppressed by rational decisions. This paper shows that the
presence of overconfident agents intensifies the free-rider problem of
rational agents, since, even if overconfident agents have very limited
information, by making it public, they trigger an uninformative ever-
lasting cascade stage, that otherwise need not start. With the help
of numerical simulations, this paper shows that having overconfident
agents cannot break the poor information flow intrinsic to erroneous
uniform behavior.
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1 Introduction

The standard model of social learning, first studied by Banerjee (1992) and
Bikhchandani, Hirshleifer and Welch (1992) (BHW), and extended by Smith
and Sørensen (2000)1, comprises of a set of agents, a finite set of actions, a
set of states of nature and a common payoff function which depends on the
agent’s own action and on the state of nature. Each agent receives a private
signal, a function of the state of nature, and uses this private information to
identify a payoff-maximizing action. Thus, each agent’s action reveals some
information about her private signal, so an agent can generally improve her
decision by observing what others do before choosing her own action.

The models of social learning assume a sequential structure, in which the
order of play is fixed and exogenous. Agents make decisions in some prede-
termined order, and when an agent’s turn comes, she can observe the actions
of each of her predecessors. Each agent has received a private signal and her
choice of action may reveal this. Therefore, by observing the decisions of her
predecessors, any agent may be able to infer their private information and
learn from them. In social settings, when agents can observe one another’s
actions, it is rational for them to learn from each other.

The main results of the social learning literature, are that, despite the
asymmetry of information, eventually every agent imitates her predecessor,
even though she would have chosen a different action on the basis of her
own information alone. In this sense, agents ignore their own information
and join the herd. Furthermore, once an agent decides to join the herd, her
own information is suppressed, so despite the available information, herds
often adopt a suboptimal action. This failure of information aggregation
is explained by two facts. First, an agent’s action is a coarse signal of
her private information and, secondly, after some point, agents suppress
their private information and join the herd, so very little information is ever
revealed.

This is an important result that helps us understand the basis for uni-
formity of social behavior. At the same time, the standard model of social
learning has several special features that deserve further examination. A
central assumption of nearly all social learning models is rational behavior.
The agent is rationally comparing her information with that of a large (in
the limit, unboundedly large) number of other agents. However, given the

1For surveys see, Gale (1996) and Bikhchandani, Hirshleifer and Welch (1998). Among
others, Lee (1993), Chamley and Gale (1994), Gul and Lundholm (1995), Moscarini,
Ottaviani and Smith (1998), and Çelen and Kariv (2004a) provide further extensions of
the theory.
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experimental evidence showing that individuals’ behavior is often odds with
Bayesian updating, it is not obvious how social learning phenomena can be
captured plausibly in a model based on perfect individual rationality.

Motivated by the large body of evidence from psychological surveys and
experiments of the importance of overconfidence, this paper tests how ro-
bust the theory is to the well-known behavioral phenomenon of individual
overconfidence. In the context of social learning, overconfident agents over-
weigh their private information relative to the public information revealed
by the decisions of others. That is, in Bayesian terms, agents weigh their
own information too heavily and give too little weight to the public infor-
mation. The idea of overconfidence amounts to the judgment bias of base
rate fallacy or base rate neglect in the sense that more overconfident agents
have more severe base rate fallacies.

The idea of studying social learning with overconfident agents is not
new, having been explored by Bernardo and Welch (2001) (BW) who study
the relationship between overconfidence and entrepreneurship in the binary-
signal model of BHW. In our model, unlike BW, there is a continuous-signal
space which allows for a richer pattern of social learning2. BW conclude that
overconfidence creates a large positive externality on the accumulated public
information. This paper reverses their conclusion but the paper should not
be seen as a test on BW per se as the models are different in several aspects.
Rather the point of this paper is that under different modeling frameworks,
the overconfidence story can be conceptually different. We integrate the
results later in the paper.

To focus on the implications of overconfidence for social learning, we ex-
clude ad hoc learning rules or other forms of bounded rational learning which
could be relevant to issues of social learning3. This allows us to conclude
that any biases result exclusively from overconfidence. Thus, our attention
is restricted to Bayesian behavior except for overwriting of private informa-
tion. This suggests that overconfidence may mitigate the tendency toward
herd behavior and raises some important questions: Is imitation resulting
from rational choice more likely to occur in the presence of overconfident
behavior? Can rational agents learn enough to make good decisions by ob-
serving the choices of only a small number of overconfident agents? Is there
a higher chance that a group achieves a desirable outcome because of the
additional dissemination of information?

2Smith and Sørensen (2000) extend the basic model of BHW to allow for richer infor-
mation structures and provide a more general and precise analysis of the convergence of
actions and beliefs.

3Recent work in this area includes Ellison and Fudenberg (1993, 1995), among others.
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In the model, rational agents choose their optimal action conditional on
the information available to them in a Bayesian way; overconfident agents
are Bayesian except for their tendency to overweigh their private informa-
tion relative to information revealed from the history of actions. Similar
definitions of overconfidence are employed in recent works in economics and
finance, including BW. We describe the rational agents’ optimal strategies
recursively; they in turn, characterize the dynamics of learning and actions.

With only rational agents, we replicate the results of Smith and Sørensen
(2000) and use them as a benchmark. The learning process has the martin-
gale property which allows us to establish convergence of beliefs and actions.
An informational cascade (convergence of beliefs in finite time) need not
arise but herd behavior (convergence of actions in finite time) must. Thus,
agents forever take into account their private signals in a non-trivial way.
Adding overconfident agents has no effect on convergence, as the rational
agents’ learning process does not lose its martingale property. The reason
is that overconfident agents use dominated strategies that convey more of
their private information.

However, overconfidence trades the additional information revealed by
overconfident decisions against more information that is being suppressed
by perfectly rational decisions. In fact, by making more of their private
information public, the overconfident agents trigger a cascade stage, that
otherwise need not start. Hence, the presence of overconfident agents inten-
sifies the free-rider problem of rational agents, and because of the surfeit of
information revealed to the group from overconfident actions, the learning
process tips into an informational cascade.

An important concept discussed in Smith and Sørensen (2000) is the
overturning principle. This asserts that even if many agents have acted
alike, it is possible that, because of a rational deviation, the information
revealed from the history up until that point cancels out. The reason is
that it is optimal to follow a rational deviator because she processes all
previously revealed information. In contrast, when the overturning party is
overconfident, the same intuition implies that she will not be followed. With
an overconfident deviator, her successor should not be so willing to follow
in her shoes as she is not a proper Bayesian.

While the convergence properties of the model are quite general, other
properties have only been established for particular types of overconfidence.
With the help of numerical simulations, we explore further the qualitative
features of the informational tradeoff caused by overconfidence. We show
that from a social perspective, the presence of overconfident agents cannot
break the poor information flow intrinsic to erroneous uniform behavior or
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improve decisions accuracy and welfare. This result is fully in line with
the message of the standard model of social learning that too much public
information can be socially harmful.

A great deal of attention has been paid to overconfidence in the be-
havioral economics literature. The common meaning of overconfidence in
these works is a mistake in self-judgment or favoring private information.
The kind of psychological regularity that is characteristic of overconfidence
makes sense in a wide range of situations4. Because such a large body of
evidence of overconfidence exists5, DeBondt and Thaler (1995) argue that
“perhaps the most robust finding in the psychology of judgment is that
people are overconfident.”

Laboratory experiments provide a clean test of social learning models by
minimizing potentially confounding effects. In a seminal paper, Anderson
and Holt (1997) investigate the model of BHW experimentally and demon-
strate that cascade behavior can be replicated in the laboratory. Following
their pioneering work, a number of experimental papers that have analyzed
aspects of social learning, e.g., Nöth and Weber (2001), Çelen and Kariv
(2004b, 2005) and Goeree, Palfrey, Rogers, and McKelvey (2004), find that
overconfidence is a significant factor in the dynamics.

The rest of the paper is organized as follows. The next section outlines
the model. Section 3 describes the case of only rational agents as a bench-
mark. Section 4 adds overconfident agents. Section 5 provides closed forms
and comparative statics with a uniform signal distribution, and section 6
concludes. Proofs are gathered in Section 7.

2 The Model

To illustrate the basic workings of overconfidence, it is necessary to consider
a special information and payoff structure. The specific model which we
analyze builds on Gale (1996).

There is a finite number of agents indexed by i = 1, 2, · · · , n. Each agent
i makes a once-in-a-lifetime decision indicated by ai ∈ {0, 1}. Decisions are
made sequentially in an exogenously determined order. All decisions are
announced publicly and therefore known to all successors.

4See Daniel, Hirshleifer and Subrahmanyam (1998), Camerer and Lovallo (1999), Ben-
abou and Tirole (1999, 2000), among others.

5Kent, Hirshleifer and Subrahmanyam (1998) study overconfidence in the context of
financial markets and provide (Section I) a summary of the psychological evidence of
overconfidence.
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The preferences of the agents are assumed to be identical and represented
by

u(ai) =

½
Ω if ai = 1
0 if ai = 0

where Ω is a random variable defined by

Ω =
Pn

i=1 ωi

and ωi is agent i’s private signal about Ω.
We assume that the ωi’s are identically and independently distributed

with c.d.f. F over a compact support with convex hull [−α,α], and F has
no atoms and satisfies symmetry,

F (ω) = 1− F (−ω), ∀ω ∈ [−α, α].

Without loss of generality, we assume that α = 1.
This setup provides an example of a pure information externality. Each

agent’s payoff depends on his own action and on the state of nature. It does
not depend directly on the actions of other agents. The summation version
of Ω makes the model nicely tractable, but some clarifications are in order.
In Appendix A, we summarize this development and explore the relation to
the general information structure studied by Smith and Sørensen (2000).

There are two types of agents in the model: rational who choose their
optimal action condition on the information available to them in a Bayesian
way, and overconfident who are Bayesians except for their tendency to over-
weigh their private information relative to the information revealed from the
history of actions.

We assume that a fraction p of agents are overconfident, and that whether
an agent’s behavior is overconfident is unobservable by others and that over-
confidence is distributed independently across agents6. The traits of over-
confidence will be stated more precisely after providing the definitions of
some key concepts. Finally, it is assumed that the information structure,
individual types and all decision rules are common knowledge.

3 The Case of No Overconfidence

We next replicate the results of the literature with only rational agents
(p = 0) and use them a benchmark. The key result gives sufficient condition

6For computational simplicity, BW assume, in contrast, that the type of each agent
is public knowledge. Their main message that overconfident agents can provide socially
useful information is unchanged when types are unknown.
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on the signal distribution guaranteeing the impossibility of informational
cascades.

We first provide a definition that will be useful in characterizing the
optimal strategy.

Definition 1 agent i follows a cutoff strategy if her decision rule is defined
by

ai =

½
1 if ωi ≥ ω∗i
0 if ωi < ω∗i

for some cutoff 7.

The decision problem of agent i is

Max
ai∈{0,1}

aiE [U(ai, ω) | ωi, Ii]

which can be summarized as

ai = 1 if and only if E[
P

j≤n ωj | ωi,Ii] ≥ 0.

where Ii = I ({aj : j < i}). Since ωi and Ii do not provide any information
about the content of successors’ signals, we obtain

ai = 1 if and only if E[
P

j≤i ωj | ωi, Ii] ≥ 0,

and thus,
ai = 1 if and only if ωi ≥ −E[

P
j<i ωj | Ii].

It readily follows that the optimal decision takes the form of a cutoff strategy,
which we state in the next proposition.

Proposition 1 For any agent i, the optimal strategy is the cutoff strategy

ai =

½
1 if ωi ≥ ω̂i
0 if ωi < ω̂i

(1)

where
ω̂i = −E[

P
j<i ωj | Ii] (2)

is the optimal history-contingent cutoff.

7Notice that the tie-breaking assumption is such that an = 1 when ωi = ω∗i , but these
are probability zero events.
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The optimal history-contingent cutoff ω̂i is sufficient to characterize
agent i’s behavior, and thus the cutoff process {ω̂i}ni=1 characterizes the
social behavior. Note that a cutoff equilibrium, i.e., an equilibrium in which
all follow a cutoff strategy is a weak perfect Bayesian equilibrium since ai
given by (1) is a best response to ω̂i after every possible history of actions
(aj)j<i and ω̂i is derived in (2) via Bayes’ rule. In Appendix B, we describe
agents’ behavior formally and discuss the essential elements of the weak
perfect Bayesian equilibrium.

Now, we are ready to define informational cascades and herd behavior,
two notions introduced by Banerjee (1992) and BHW to address the same
phenomenon but Smith and Sørensen (2000) emphasize the difference be-
tween them.

For any agent i and each action ai ∈ {0, 1}, we call the set of cutoffs Cai

such that C1 = (−∞,−1] and C0 = [1,∞) the ai-cascade set. Note that an
agent who engages who sets her cutoff at C1 or C0 takes either action 1 or
0, no matter what her private signal is. In contrast, an agent who reports
a cutoff in the interval (−1, 1), indicating that there are some signals that
can lead her to choose action 1, some to choose 0.

Definition 2 (informational cascades) An informational cascade on ac-
tion a = 1 (a = 0) occurs when ∃i such that ω̂j ∈ C1 (C0) ∀j ≥ i.

Analogously, a limit-cascade on action x = 1 (x = 0) occurs when the
process of cutoffs {ω̂i} converges almost surely to a random variable ω̂∞ =
limn→∞ ω̂n, with supp(ω̂∞) ⊆ C1 (supp(ω̂∞) ⊆ C0).

Further, we call a finite sequence of agents who act alike a finite herd
and, we let

lji ≡ #{aj = ai, i ≤ j ≤ n}

denote the length of a finite herd following agent i in a group of size n.

Definition 3 (Herd behavior) Herd behavior occurs when ∃i such that

limn→∞ lni /n = 1.

Hence, a cascade implies herd behavior but herding is not necessarily the
result of an informational cascade. When acting in a herd, agents choose
the same action, but they could have acted differently from one another if
the realization of their private signals had been different. In an informa-
tional cascade, an agent considers it optimal to follow the behavior of her
predecessors without regard to her private information.
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The first step in the analysis is to establish convergence of the cutoff
process {ω̂i}. From the definition of equilibrium (see Appendix), we know
that Ii ⊆ Ii+1 ⊆ I, i.e., agents’ public information is non-decreasing over
time. Hence, the equilibrium payoffs must be non-decreasing over time and,
since it is bounded, must converge. We use this result to establish conver-
gence of cutoffs.

Proposition 2 Let {ω̂i, Ii} be an equilibrium. Then {ω̂i} is a martingale
with respect to {Ii} and there exists a random variable ω̂∞ such that ω̂n
converges to ω̂∞ almost surely.

In words, {ω̂i} has the martingale property (following from the martin-
gale property of conditional expectations) so by the Martingale Convergence
Theorem, it converges almost surely to a random variable ω̂∞ = limn→∞ ω̂n.
Hence, it is stochastically stable in the neighborhood of the fixed points, −1
and 1, meaning that there is a limit-cascade. However, since convergence of
the cutoff process implies convergence of actions, behavior can not overturn
forever. In other words, behavior settles down in some finite time and is
consistent with the limit learning.

Hence, with no overconfidence, we agree with Smith and Sørensen (2000)
that a cascade need not arise but a limit-cascade and herd behavior must8.
The rate of convergence of the cutoff process and its limiting value depend
on what the exact realization of private signals is9. Moreover, what the
Martingale Convergence Theorem does not imply is converges in finite time.

As for the rate of convergence, consider the law of motion for ω̂i when
ai−1 = 1

ω̂i = ω̂i−1 − E+(ω̂i−1).

where E+(ξ) ≡ E [ω|ω ≥ ξ]. By symmetry E+(ω̂i−1) ≥ 0 and thus ω̂i ≤ ω̂i−1
and the inequalities are strict as long as ω̂i−1 > −1. Notice that the relation
ω̂i = ϕ(ω̂i−1) is continuous [−1, 0] and ϕ(−1) = −1. Furthermore, ϕ(ω̂i) ≤
ω̂i and the inequality is strict as long as ω̂i < 1 which implies that ω̂i & −1.
In the next proposition we state a simple sufficient condition on the signal
distribution such that a cascade never starts.

8Smith and Sørensen (2000) intreduce the Martingale Convergence Principle to show
that social learning eventually leads of to convergence of actions.

9We provide a characterization for the case of bounded beliefs (private beliefs are said to
be bounded when there is no private signal that can perfectly reveal the state of the world
and to be unbounded otherwise). With unbounded beliefs, Smith and Sørensen (2000)
show that learning leads to correct decisions, and with bounded beliefs, we agree with
them that what is learned can be incorrect.
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Proposition 3 An action 1-cascade is impossible, i.e., ω̂i /∈ C1 for all i, if

F (ω) ≤ (ω + 1)
(ω + 2)

for any ω ∈ [−1, 0], and an analogous argument applies to action 0-cascade.

In words, there is a constriction on the mass of probability near the edge
of the signal support as otherwise, like in BHW, a single decision can guide
all subsequent agents to a cascade. Nevertheless, this constriction leaves a
very broad class of distributions for which an informational cascade with
only rational agents is impossible.

Our conjecture is that the impossibility of cascades holds for the model
even more generally for a very wide range of signal distributions. However,
like Smith and Sørensen (2000) we know of no simple necessary condition
that guarantees the impossibility of cascades. Note, however, that with
the atomic tails in the discrete-signal setup of BHW informational cascade
arises.

Summarizing,

Theorem 1 (No overconfidence) With only rational agents, (i) an in-
formational cascade need not arise, i.e., ω̂i /∈ {C0, C1} for all i, and (ii) a
limit-cascade, i.e., ω̂∞ = limn→∞ ω̂i, with ω̂∞ ∈ {C0, C1}, implies that a
herd on the corresponding action almost surely arises.

4 The Case of Overconfidence

Now, we add overconfident agents (p > 0). The main result is that overcon-
fidence can cause agents to act on their private information more strongly
than rationally, thereby exacerbating the possibility of informational cas-
cades. Overconfident agents’ perception about the precision of their private
information is overoptimistic, and thus overweigh it relative to the public
information revealed by the behavior of others. Put differently, in Bayesian
terms, overconfident agents weigh their own information too heavily and
give too little weight to public information.

Stated in the language of the previous section, the following definition
of overconfidence serves as the working definition. Recall that although
whether an agent is overconfident is unobservable by others, the fraction
of overconfident agents p and the degree of overconfidence ω̃ are public
knowledge.
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Definition 4 (Overconfidence) Agent i is said to be overconfident if for
any history of actions (aj)j<i her decision takes the form of the cutoff strat-
egy

ai =

½
1 if ωi ≥ ω̃i
0 if ωi < ω̃i

(3)

where ω̃i is determined by the commonly known mapping ω̂ 7→ ω̃(ω̂) such
that (i) ω̃(ω̂) ∈ [0, ω̂) for any ω̂ ∈ [0, 1) and ω̃(ω̂) = ω̂ for any ω̂ ∈ C0,
(ii) ω̃(ω̂) is symmetric, i.e., ω̃(−ω̂) = −ω̃(ω̂), and (iii) ω̂ is the rational
history-contingent cutoff rule given p, ω̂, and ω̃(ω̂).

As Figure 1 illustrates, if a herd of action a = 1 precedes a rational agent
i then according to (1) and (2) her cutoff ω̂i is close to −1. Hence, in the
subset [ω̂i, 0), which we call an imitation set, private signals are ignored in
making a decision and agent i imitates her predecessors’ action. Similarly,
put side by side with the rational agent, according to (3) the cutoff of an
overconfident agent i is ω̃i ≥ ω̂i, and thus she has a smaller imitation set
[ω̃i, 0) ⊆ [ω̂i, 0).

[Figure 1 here]

Note that overconfidence is symmetric and invariant across histories that
reveal the same information. As such, overconfidence does not create a bias
toward any action. Furthermore, to avoid trivialities, like BW we assume
that overconfidence is bounded in strength, in the sense that it ceases once
the history of actions provides a sufficiently decisive guide regarding to what
the state is. Thus, informational cascades are unbreakable even in the pres-
ence of overconfident agents.

The behavioral postulate is that overconfidence is the agents’ only motive
other than maximization. Noticeably, there is a trade off between these
two motives since they imply different behavior. Therefore, overconfidence
is viewed as being irrational or erroneous. However, the tension between
overconfidence and maximization is partially reconcilable as overconfidence
falls once enough public information is revealed.

With common knowledge of the distribution of types and all decision
rules, agent i’s publicly available information I 0i is generated by p, ω̃(ω̂) and
the history of actions (aj)j<i. Hence, after adding overconfident agents, the
optimal decision rule of rational agent i can be summarized as

ai =

½
1 if ωi ≥ ω̂i
0 if ωi < ω̂i
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where the history-contingent cutoff rule is now described by

ω̂i = −E
hP

j<i ωj | I 0i
i

(4)

As in the model with no overconfidence, the cutoff ω̂i inherits all the in-
formation that a rational agent i learns from the history of actions, and
therefore is sufficient to characterize her behavior. Furthermore, Put side
by side with a rational agent, an overconfident agent i’s cutoff ω̃i is given
by the mapping ω̂ 7→ ω̃(ω̂).

Even in the presence of overconfident agents, the process of rational
cutoffs {ω̂i} does not lose the martingale property. This has an important
implication: rational agents’ cutoffs and thus actions are convergent.

Proposition 4 Augment the model by adding overconfident agents and let
{ω̂i,I 0i} be an equilibrium. Then {ω̂i} is a martingale with respect to {I 0i}
and there exists a random variable ω̂∞ such that ω̂n converges to ω̂∞ almost
surely.

After adding overconfident agents to the model, the proof goes through
the same as with only rational agents. Since with overconfident agents the
cutoff process of the rational agents (ω̂i) is still a martingale, the previous
convergence result is unaffected. The reason behind it is that overconfident
agents are in fact equivalent to rational agents with dominant strategies that
are at least as informative.

Next, we show that informational cascades start with overconfident agents
as the cutoff process easily escapes in some finite time into some a-cascade
set. For an informational cascade, say on a = 1, to start, a discrete jump
of (ω̂i) into C1 must occur in a finite time. With overconfidence, the law of
motion for ω̂i when ai−1 = 1 is given by

ω̂i = ω̂i−1 − (1− p)E+(ω̂i−1)− pE+(ω̃i−1)

as each rational agent assigns a chance p that she is preceded by an overcon-
fident agent. Thus, it readily follows that to have a cascade on investment
we simply need that

ω̂i−1 − E+(ω̂i−1)− p∆+(ω̂i−1) ≤ −1

where ∆+(ω̂i−1) ≡ E+(ω̃i−1) − E+(ω̂i−1) is the rational learning attribut-
able to overconfidence, which is positive and increasing in the degree of
overconfidence.
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Hence, to have a cascade the trick is to choose a proportion of overcon-
fident agents p and level of overconfidence such that a discrete jump into
C1 takes place. Once the cutoff process enters the cascade set C1 action
a = 1 is always taken thereafter. Note that even with a small fraction of
overconfident agents p information is lumpy, so during a herd actions can
be informative enough to toss all successors into an informational cascade.
This is because someone who overweighs private information, reveals more
information about the private signal, and, as a result, may stimulate an
informational cascade.

The difference between informational cascades and herd behavior obvi-
ously matters very little if during a herd public information is accumulated
so slowly that it has almost no economic value ex ante. However, note that
the informational premium of being outside of a cascade is that a deviation
that reveals lots of information can never be ruled out. Thus, there could
be a significant informational loss to being in a cascade since substantial
valuable information is completely suppressed by agents’ decisions.

It is easy to see that the value of information lost is unbounded since

E[(
P

i≤n ωi)
2
¯̄̄P

i≤n ωi ≥ 0] = n2E[ωi]2

and n2E[ωi]2 →∞ as n→∞, but whether rational agents are better off or
worse off depend on the informational trade off between the additional in-
formation revealed by overconfident actions and the decrease of information
revealed by rational agents’ actions.

To illustrate the short-run dynamics of the model and to understand the
dissimilarities between the case of no overconfidence and overconfidence,
consider a finite herd followed by a deviator. With only rational agents, the
deviator reveals clear cut information regarding her private signal that dom-
inates the accumulated public information. Thus, her successor will be
slightly in favor of joining the deviation. This is referred to by Smith and
Sørensen (2000) as the overturning principle.

After adding overconfident agents, in contrast, successors to a deviator
will believe that it is likely to be an overconfident act and thus will be less
in favor of joining the deviation. The reason is that overconfident agents
have a larger no herding subset of private signals and thus, put side by side
with a rational agent, an overconfident agent reveals more of her private
information by joining a herd but less by avoiding it.

To illustrate, assume that a long finite herd of a = 1 precedes some
rational agent i − 1. Then, her cutoff is close to −1. If she receives an
extreme contrary signal, −1 ≤ ωi−1 < ω̂i−1, she deviates by choosing a =
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0. With only rational agents, since necessarily ω̂i−1 > E−(ω̂i−1), having
observed the deviation a rational agent i overturns the behavior by setting
ω̂i > 0 (but yet be close to zero). On the other hand, with overconfident
agents E−(ω̃i−1) ≥ E−(ω̂i−1) since ω̃i−1 > ω̂i−1, and thus for some level of
overconfidence the behavior will fail to overturn, ω̂i < 0, since the deviation
has less impact on public information.

Summarizing,

Theorem 2 (Overconfidence) With overconfident agents, (i) an infor-
mational cascade arises, i.e., for any fraction of overconfident agents p and
mapping of overconfidence ω̂ 7→ ω̃(ω̂) there exists some finite i such that
ω̂i ∈ C0 or ω̂i ∈ C1 for all j ≥ i, and (ii) herd violations fall short of
offsetting the accumulated information favoring the contrary action.

5 Closed Forms

To illustrate the dynamics of the model, we need to further specialize the
model by assuming that for each agent i, the signal ωi is uniformly distrib-
uted, so that the history-contingent cutoff rules can be obtained in closed
forms. It is particularly useful as it allows carrying out some comparative
statics exercises to explore further the qualitative features of the informa-
tional trade off caused by overconfidence.

With only rational agents the dynamics of the cutoff rule ω̂i is described
in a closed form recursively as follows

ω̂i =

(
−1+ω̂i−1

2 if ai−1 = 1
1+ω̂i−1

2 if ai−1 = 0

where ω̂1 = 0.
The impossibility of an informational cascade follows immediately since

for every i, −1 < ω̂i < 1. It implies that the agent i’s decision always
depends in a non-trivial way on her private information in the sense that for
some signals she will choose ai = 1 and for other signals she will choose ai =
0. However, notwithstanding the impossibility of informational cascade, the
model predicts that herd behavior must arise.

To see that, note that if we assume that the first two agents choose
action 0, the third agent’s cutoff is ω̂3 = 3/4; if the first three agents choose
0, the fourth agent’s cutoff is ω̂4 = 7/8; and if the first k agents choose 0,
the (k+1) agent’s cutoff is ω̂k+1 = 1−2−(k−1). Hence, any successive agent
who also chooses action 0 reveals less of her private information and makes
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it more difficult for her predecessor not to choose action 0, but at each date
the cutoff lies strictly below C0.

More precisely, let pi denote the probability that aj = 0 for all agents
j ≥ i conditional on the history al = 0 for all agents l < i, and note that
pi = pi+1ω̂i since ω̂i = Pr(ai+1 = 0 |aj = 0,∀j ≤ i). Then, pi > 0 implies
that pi+1 > pi and in fact pn → 1 as n→∞. Beginning with the first agent,
log p1 =

Pn
i=1 log(1 − 2−i), and as n → ∞, log p1 ≈ −

P∞
i=1 log 2

−i > −∞
so that p1 > 0 and pn → 1 as ω̂n → 1.

On the other hand, if the fourth agent chooses action 1 after the first
three agents choose 0, her decision reveals that her signal lies in the inter-
val [7/8, 1] and the fifth agent’s cutoff is ω̂5 = −1/16. Hence, the longer a
cluster of agents acts alike, the larger the asymmetry between the informa-
tion revealed by imitation and deviation. Notice that a deviator induces her
successor to be slightly in favor of joining the deviation.

After adding overconfident agents to the model, simple calculations show
that the adjusted cutoff dynamics of rational agents follow the process

ω̂i = p ω̂i−1−ω̂i−12 +

(
−1+ω̂i−1

2 if ai−1 = 1
1+ω̂i−1

2 if ai−1 = 0

where ω̂1 = 0 and in the language of the previous section (ω̂i−1 − ω̂i−1)/2
is the rational learning of agent i attributable to overconfidence which is
positive (negative) if ai−1 = 1 (ai−1 = 0).

To begin with, we illustrate, with an extreme example, how the behavior
alters because of overconfidence. Suppose that the second agent is so over-
confident that she ignores the information revealed from the first’s decision
and follows her own signal, ω̃2 = 0. If the third agent is rational and iden-
tifies the nature of the second’s decision, whenever the first two decisions
coincide, say a1 = a2 = 1, the third should also choose a3 = 1 regardless of
her private signal, ω̂3 = −1. Hence, the surfeit of information revealed by
the second’s actions leads to an informational cascade.

Since the model resolves so well in closed form for the uniform signal
distribution, it is useful to illustrate how cascades start with the following
form of overconfidence.

Example ω̂ 7→ ω̃(ω̂) such that ω̃(ω̂) = ω̂k for any ω̂ /∈ {C0, C1} for some
k > 1 odd and ω̃(ω̂) = ω̂ otherwise.

Note that k is the (constant) degree of overconfidence and that over-
confidence is bounded in strength as overconfident actions diminish once
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the cutoff process jumps into a cascade. Figure 2 illustrates the process of
rational cutoffs {ω̂i} for the first few agents when all choose action 1 with
different degrees of overconfidence k (Figure 2a) and different proportions
of overconfident agents p (Figure 2b). Note that the adjusted cutoff process
easily escapes into C1, meaning that an informational cascade occurs. In this
state of affairs the actions of overconfident agents do not remain informative
during a cascade, and thus it is an absorbing state.

[Figure 2 here]

As to the welfare properties of the equilibria, the likelihoods of correct
decisions with and without overconfidence can not be found analytically
since conditional on the payoff-relevant state, private signals are negatively
correlated. However, simulations show certain directional effects, which, to
the extent that we can cover finite group sizes, we conjecture that they are
robust10. Figure 3 summarizes simulations that were carried out with a
group size n = 10 with different degrees of overconfidence k (Figure 3a) and
different proportions of overconfident agents p (Figure 3b).

[Figure 3 here]

Note that the ex ante probability that rational agents make a correct
decision increases over time but decreases with both increasing proportion of
overconfident agents and increasing degree of overconfidence. From a social
point of view, not only that having overconfident agents does not make
rational agents better off, it also decreases average welfare as overconfident
agents are more likely to take a suboptimal action.

6 Conclusion

In this paper we test how robust the theory is to the well-known behavioral
phenomenon of individual overconfidence. Overconfident agents overweigh
their private information relative to the public information revealed by the
decisions of others, and thus, when following a herd, they reveal more of the
information available to them. However, we show that overconfidence trades
the additional information revealed by overconfident decisions against more
information that is being suppressed by perfectly rational decisions.

10Numerical simulation are carried out by MatLab. Experiments are repeated until the
marginal change in the average of an for additional 107 experiments is less than 10−5.
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While with only rational agents informational cascades are impossible,
they arise after adding overconfidence agents, for the surfeit of informa-
tion revealed by overconfident actions can lead to an informational cascade.
This is because someone who overweighs private information, reveals more
information about the private signal, and, as a result, may stimulate an in-
formational cascade. Thus, the presence of overconfident agents intensifies
the free-rider problem of rational agents and cannot break the poor infor-
mation flow intrinsic to uniform behavior or improve decisions accuracy and
welfare.

There is a large literature on overconfidence. The most closely related
paper is by BW who find that overconfidence can be useful, especially if
the group is large enough to benefit from its positive information external-
ity. The reason for the different results is that their model is based on the
binary-signal-binary-action model of BHW. In such a binary signal struc-
ture, all herds are cascades since once two consecutive decisions coincide no
signal can lead to a deviation. Thus, information is revealed from decisions
made before a cascade starts, from the two decisions that start the cascade
and from overconfident deviations from a cascade. Furthermore, rational
agents do not suppress their own information more because of the addi-
tional dissemination of information available from overconfident decisions.

We expect, however, that the results of BW to hold also in a continues-
signal model with atomic tails, i.e., when the private signal distribution is
close enough to BHW’s binary private signal, but we know of no sufficient
conditions which guarantee that some overconfidence can be useful. Given
that BW have reached a very different conclusion, it is natural to ask about
the robustness of the results to different information structures. Whether
this would lead to sharply different results is unclear, since all the decision
rules would have to be changed to reflect the new environment. Obviously,
different information structures may lead to different outcomes. This is an
important subject for future research.

7 Omitted Proofs

Proof of Proposition 2 By definition (Billingsley 1986), {ω̂i} is a sub-
martingale with respect to {Ii} if the following four conditions hold: (i)
Ii ⊆ Ii+1, (ii) ω̂i is measurable Ii, (iii) E[|ω̂i|] <∞, and (iv) with probabil-
ity 1, E[ω̂i+1|Ii] ≥ ω̂i. {ω̂i} is a supermartingale if {−ω̂i} is a submartingale,
and {ω̂i} is a martingale if it is both a sub- and supermartingale.

The first condition follows directly from the definition of weak perfect
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Bayesian equilibrium. The second conditions follows directly from the def-
inition the cutoff strategy. The third holds because U(1, ·) is bounded. To
establish the fourth condition, note that using symmetry,

E[ωi−1 | ω̂i−1] = F (ω̂i−1)E−(ω̂i−1) + [1− F (ω̂i−1)]E+(ω̂i−1)
=

R ω̂i−1
−1 ωdF +

R 1
ω̂i−1

ωdF

=
R 1
−1 ωdF

= 0

where E+(ξ) ≡ E [ω|ω ≥ ξ] and E−(ξ) ≡ E [ω|ω < ξ], and thus E[ω̂i | ω̂i−1] =
ω̂i−1.

From the martingale convergence theorem, there exists a random variable
ω̂∞ such that ω̂n → ω̂∞ almost surely and E[ω̂∞] = E[ω̂i] for all i.

Proof of Proposition 3 Using the symmetry of F , when ai−1 = 1 the
law of motion for ω̂i is given by

ω̂i = ω̂i−1 − E+(ω̂i−1)
= ω̂i−1 − 1

1−F (ω̂i−1)
R 1
ω̂i−1

ωdF

= ω̂i−1 +
1

1−F (ω̂i−1)
R ω̂i−1
−1 ωdF

≤ ω̂i−1 − F (ω̂i−1)
1−F (ω̂i−1)

and with strict inequality as long as ω̂i−1 > −1. The condition that ω̂i > −1
for all i follows by direct calculations.

8 Appendix

A: Information and payoff structures We analyze a model first pro-
posed by Gale (1996), with a particularly tractable information and payoff
structures. Next, we place the model in the domain of the social learning
literature.

A general model of social learning comprises a finite set of agents indexed
by i = 1, ..., n, a finite set of actions A ⊂ R, a set of states of nature Ω, and
a common payoff function U(a, ·).

Uncertainty is represented by a probability measure space (Ω, I,P),
where Ω is a compact metric space, I is a σ-field, and P a probability
measure. Each agent i receives an informative private signal σi(ω), a func-
tion of the state of nature ω, and uses this private information to identify
an irreversible payoff-maximizing action.
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We assume that Ω = Ω1 × · · · ×Ωn , where Ωi is an interval [−α, α] and
the generic element is ω = (ω1, ..., ωn). For each i, the signals are assumed
to satisfy σi(ω) = ωi,∀ω ∈ Ω where the random variables ω1, ..., ωn are
independently and continuously distributed, that is P = P1 × · · · × Pn.
Specifically, Pi is given by a c.d.f. F over the compact support with convex
hull [−α, α], such that E [ω] = 0, F has no atoms and satisfies symmetry,
i.e., F (ω) = 1− F (−ω) ∀ω ∈ [−α, α].

Note that we start with n finite, yet we are interested in approximating
the behavior when the group size n is arbitrarily large. In other words, we
analyze the limit behavior of a sequence of group sizes indexed by n. Al-
though the information of agent i ωi about the state of the world

Pn
i=1 ωi is

not constant across different sized groups n, the underlying decision prob-
lem, the optimal decision rule, and hence our results are independent of n
as in the standard social learning models.

B: Weak perfect Bayesian equilibrium We analyzed the weak perfect
Bayesian equilibrium of the game. Agent i’s choice of action is described by
a random variable Xi(ω) and her information is described by σi and a σ-
field Ii = I ({Xj : j < i}). Since Ii represents the agent’s publicly available
information, it must be the σ-field generated by the random variables {Xj :
j < i}, and since the agent’s choice can only depend on the information
available to her, Xi must be measurable with respect to (σi, Ii). Finally,
since Xi is optimal, there cannot be any other Ii-measurable choice function
that yields a higher expected utility.

These are the essential elements of the weak perfect Bayesian equilibrium
stated below.

Definition 5 A weak perfect Bayesian equilibrium consists of a sequence of
random variables {Xi}, {σi} and σ-fields {Ii} such that for each i = 1, ..., n
(i) Xi : Ω → A is (σi,Ii)-measurable, (ii) Ii = I ({Xj : j < i}), and (iii)
for any (σi, Ii)-measurable function x : Ω→ A,

E[U(x(ω), ω)] ≤ E[U(Xi(ω), ω)].

Note that the definition of equilibrium does not require optimality off the
path of play. Since there are no strategic interactions, there is no incentive
to make an out-of-equilibrium move in order to signal to successors.
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Figure 2a. The sequences of cutoffs when all agents choose action 1 
with different degrees of overconfidence
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Figure 2b. The sequences of cutoffs when all agents choose action 1 

with different proportions of overconfident agents
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Figure 3a. The probability that a rational agent makes a correct decision 
with different degrees of overconfidence
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Figure 3b. The probability that a rational agent makes a correct decision 

with different proportions of overconfident agents
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