SYSTEM S OF REGRESSION EQUATIONS

1. MULTIPLE EQUATIONS

Yt = XntBn + Uy,

n=1,.N,t=1..T, X, is 1xk, and B, iskx1. Thisisa
version of the standard regresson model where the
observations are indexed by the two indicesn and t rather
than by asingleindex. Applicationsare

B n indexes equations, with different dependent
variables, and t indexes observation units. Example:
YiYy are the input demands of firm t. In this
example, there are likely to be parameters in common
acr oss equations.

B n indexes observation units, t indexes time, and the
data come from a timeseries of cross-sections.
Example: y,, istheincome of household n in the Census
Public Use Samplein year t.

B n indexes observation units, t indexes time, and the
data come from a longitudinal panel of time series
observationson each observation unit. Examples. y,,is
hours supplied by the head of household nin year t in
the Panel Study of Income Dynamics; or y,,, isthe excess
return on stock market asset n on day t in the CRISP
financial database.



These problems may contain the usual litany of
econometric problems: (1) anon-scalar covariancematrix
due to heter oskedasticity across observation units, serial
correlation over time, or covariance across equations
within an observation unit; and (2) the potential for
correlation of explanatory variables and disturbances
when x includes lagged dependent variables. They also
providean opportunity for aricher analysisof covariance
patterns, since observations across units can be used to
Identify covariance patterns over time, and observations
across time can be used to identify heteroskedasticities
acr oss units.

2. STACKING THE DATA

For analysis(and computation), it isuseful toor ganize
the observations in vectors in which all the observations
for n =1 arestacked on top of all the observationsfor n =
2, etc. Usethenotation:

Yn= 1Xn= y Uy = J
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Then, the system can be written

Yo =XPn+U,,n=1,.,N
or in stacked form,
(1) y=Xp+u.

The vector vy, is of dimension Tx1, the array X, is of
dimension Txk, the vector y is of dimension NT x1, the
array X is of dimension NTxNk. We wrote down the
system assuming the number of parameters k was the
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same in each equation, but this is not necessary. One
could have X, of dimension Txk, and X of dimension
NTx(k,+..+k,). If thereareparametersin common acr 0oss
different equations, then the corresponding explanatory
variables will be stacked in the same column rather than
placed in different columns, and the overall number of
columnsin X reduced accordingly.

Suppose the observations are independent and
Identically distributed for different t, but the covariances
E(u,u.,) =0, arenot necessarily zero. Let 2 =(0,,,) be
the NxN array of covariances of the observationsfor each
t. Thecovariancematrix of thestacked disturbancevector
uisthen

O dp Ol Oy

0,.1.0 .. O
E(uu’) = odr Oply ls

Onilr Ondr -+ Onply

wherel; denotesa TxT identity matrix.

Definethe Kronecker Product A®B of a nxm matrix

A and a pxq matrix B:



a,B a,B a,B

a,.B a B,,,amB
A®B = 212 ©p2 2

an]B anZB e ant

Then, A®B is (np)x(mq). Kronecker products have the
following properties:

(A®B)(Ce®D) = (AC)®(BD) when the matrices are
commensur ate

(A®B)* = (AY)e(B*) when A and B are square and
nonsingular

(A®B)" = (A")®(B’)

trace(A®B) = (trace(A)):(trace(B)) when A and B are
square

det(A®B) = (det(A))P(det(B))" when A isnxn and B is
Pxp

Applying the Kronecker product notation to the
covariance matrix of u, E(uu’) = 2al-.

3. ESTIMATION

The problem of estimating the stacked model y = X[3
+ U when the covariance matrix of the disturbances is
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2®l; and 2 isknown isa straightforward GL S problem,
provided there are no additional complications of
correlation of explanatory variables and disturbances.
Using the rule for inverses of Kronecker products, the
GL Sestimator is

b= (X'(Zel)X) X (el .

Computationally, the most practical way to do this
regression isto calculate a triangular Cholesky matrix L
such that L'L = 2. Then, thetransformed model

(2 (Lel)y = (Lel)XP + (Lel)u

satisfiesGauss-M arkov conditions(Verify),and theBLUE
estimator of B is OL Sapplied to thisequation. The data
transfor mations can be carried out separately for each t,
and recursively for n =1,...,N.

When 2 is unknown, one can do FGLS estimation:
First apply OLS to (1) and retrieve fitted residuals Q.
Then, estimate the elements o,,, of 2 from the average
(over T) of the sguares and cross-products of the fitted
residuals,

-1y q,

1
T =

m



Finally, apply OLSto (2), with L a Cholesky factor of the
estimated 2.

The problem of estimating 3 in (1) when thereareno
cross-equationrestrictionsonthef3, iscalled theseemingly
unrelated regressions problem. Summarizing, the 3, can
beestimated consistently equation-by-equation usingOL S,
In most cases, this is inefficient compared to GLS; and
FGL Sisasymptotically fully efficient. Thereisonecasein
which thereis no efficiency gain from use of GLSrather
than OLS. Suppose no cross-equation restrictions on
parameters and common explanatory variables across
equations; i.e,, X; =X, =... =X,. Then, X =1®X,, and
the GL S estimator is

b = ((Iy®X, )&l 1)(IneX ) (IneX, ) (2 8l )y .

As an exercise, use the Kronecker product rulesto show
that this formula reduces to the OLS estimator b, =
(X' X)*X,'y, for each n. Intuitively, thereason OLS s
efficient in thiscaseisthat the OLSresidualsin, say, the
first equation are automatically orthogonal to the
(common) exogenous variables in each of the other
equations, sothat thereisnoadditional information onthe
first equation parametersto be distilled from the cross-
equation orthogonality conditions. Put another way, GL S
can beinterpreted asOL Sapplied to linear combinations
of the original equations, with the linear combinations



obtained fromtheCholesky factorization of thecovariance
matrix of thedisturbances. But theselinear combinations
of the common exogenous variables leaves one with the
same exogenous Vvariables, and the orthogonality
conditions satisfied by the GL S estimates are the same as
the orthogonality conditions satisfied by OL S on thefirst
equation in the original system.

4. AN EXAMPLE

Suppose a firm t utilizes N = 3 inputs, and has a
Diewert unit cost function,
N N
t= . 1 Zl & VPilPjr
1= Jj=
where p, isinput i price, and the a's are nonnegative
parameterswith o; = «;. By Shephard'slemma, the unit
Input demand functionsaregiven by thederivativesof the
unit cost function with respect to the input prices:
N
Znt: Z anj p]t/pm
j=1
Written in stacked form, these equations become



17 (\/pz/pl T (\/p3/p1 r O Or 07
Or  (/o,/p,)y 07 Iy (ypsp)r Op

0

T 07 (yP1/P3)r Or (YPo/P3)r Ly

where 1; denotesa Tx1 vector of 1'sand (,/pl/p2 )T denotes

a Tx1 vector with components ,/p,/p,,

parameter restrictions across equations lead to variables
appearing stacked in thesame column. Thedisturbancescan
beinter preted ascomingfrom random variationsacr ossfirms

9

Note that the




around therespective" average" parameterso,;, 0, 0z3. The
Interesting econometric feature of this setup is that even if
there is considerable multicollinearity in prices so that OLS
equation by equation is imprecise, this multicollinearity is
broken when the data are stacked. Then, thereislikely to be
a substantial efficiency gain from estimating the equationsin
stacked form with the cross-equation restrictions imposed,
even at the first OL S stage before the additional efficiency
gain from the second-stage FGL Sis achieved.

5. PANEL DATA

The application of systems of regressions equations to
panel data, where n indexes observation units that are
followed over time periodst, isvery important in economics.
A typical model for panel datais

Y =X.P+0,+u, forn=1.. Nandt=1,..,T.

In thismodel, the 3 parametersare not subscripted by n or t;
thisimplies they are the same for every unit and every time
period. (Thisisnot asrestrictive asit might appear, because
variation in parametersover timeor with somecharacteristics
of the units can be reintroduced by including in the x's
Interactionswith timedummiesor with unit dummies.) Thec,
are termed individual effects. They may be treated as
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inter cept terms that vary across units. The model with this
interpretation iscalled afixed effects(FE) model. Alter nately,
the o, may be interpreted as components of the disturbance
that vary randomly across units. The model with the second
interpretation is called a random effects (RE) model. Often,
the assumption is made that once the individual effects are
isolated, the remaining disturbances u,, are independent and
identically distributed acrossn aswell ast. Alternately, theu,,
could be serially correlated; this requires another layer of
calculation for GLS.

The questions that arise in analysis of the panel data
model are (a) under what conditions the model parameters
can beestimated consistently, in either thefixed effectsor the
random effects interpretation; (b) what is the form of
consistent or efficient estimators; and (c) whether therandom
effectsor thefixed effectsmodel is" better" in applications. |
first analyze the fixed effects case, then the random effects
case, and after thisreturntothesequestionsto seewhat can be
said.

6. FIXED EFFECTS

The fixed effects model can be rewritten by stacking the
T observations on unit n,

(3) yn = XnB + 1Tan + un ’
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where 1;isaTx1vector of ones. Equation (3) isa special case
of a general system of regression equations, and can be
approached inthesameway. Stackingtheunit data, first unit
followed by second unit, etc., givesthe stacked mode

(4) y=XB +Do+u,

whereD =[d,; d, ... dy] isa NTxN array whose columnsare
dummy variables such that d , is one for observations from
unit m, and zero otherwise, and « is a Nx1 vector with
componentso.,,. (Exercise: Verify that thissetup followsfrom
the general stacking pattern shown in Section 2.)

In (4), note first that any column of X that does not
change over t, within the observations for a unit, is linearly
dependent on the columns of D. Then, when there are fixed
effects, thereisnopossibility of identifyingthesepar ateeffects
of X variablesthat are time-invariant. Suppose we remove
any such columnsfrom X, sothat only time-varying variables
are left. For good measure, we can also remove from X the
within-unit means of the X variables, so that X now denotes
deviations from within-unit means. The model (3) can be
rewritten asarelationship in unit meansplusrelationshipsin
deviations from within unit means:

(5) Vo =, +
6) Y, =XB+

+CI
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wherey, and u, areunit means, Y , isavector of deviations of
the unit n observations from the unit mean, and X, is an
array of deviationsthat has zer o unit means by construction.
Stack thesemodelsfurther, with theunit onedatafollowed by
the unit two data, etc., to obtain

Yl Xl ﬁl

Y2 X2 ﬁ2
(7) =B

_YN_ _)(N_ _ﬁN_

Thedeviationsin (7) eliminatethefixed effects. Then, (7) can
beestimated by OL S, which isconsistent for f asN - +eor T
- +oo Or both. (Notethat (7) has one redundant observation
for each observation unit, since the within group deviations
must sum to zero. One can €iminate any one of the
observations in each unit, or alternately leave it in the
regression and remember that the number of observationsis
really N(T-1) rather than NT.) Theregression (7) iscalled the
within regression. One can estimate the fixed effect for each
unit n using the formula @&, = y,; thisis called the between
regression. Thefixed effectsareestimated consistently only if
T - +oo,

Theparticularly ssmpleformulaabovefor thefixed effects
estimates came from normalizing the x's to have zero
within-unit means. Inthegeneral casewherethex'scan have
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non-zer o unit means, the fixed effect estimators become &, =
Y. - X,b, where b isthevector of estimates from (7).

Exercise 1. Using the projection notation Qp = | -
D(D'D)?'D’, note that the OLS estimator of  in (4) isb =
(X'QpX)™X'Qpy. Show that this is the same as the within
estimator of f3.

/. RANDOM EFFECTS

Suppose the a's in (3) are treated as components of the
disturbance, so that (3) can berewritten asy = X3 + v, where
VvV, =0, + U, Then, an OLSregression of y on X yields a
consistent estimator of f asNT - +o, provided thex'sand the
disturbances areuncorrelated. Thecovariance matrix of the
stacked disturbances is now E(vv’) = 1,®Q, where Q is the
TxT matrix of covariances of the disturbances o, + u,, for
given n, with the form

2 2 2 2
006 +0u 006 006
0a2 0a2+0u2 0052 2 / 2
8 Q= =0,%1,1,' +0 4,
2 2 . 2 2
006 006 006 +0u
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Efficiency of estimation can beimproved by GLS. Verify as
an exercisethat L = (I; - A1;1;')/o,, with A = (1 - 6,/(0,>+T
0,)Y)IT, satisfiesLQL’ =1;. Then, GLSisthesameasOLS
applied to the transformed data (I,®L)y = (I,®L)XPB +
(1,®L)Vv. In practice, Q isunknown and FGL S must be used.
Intuition for how to estimate g,>and 6, can be obtained from
an analogy to population moments. Let v, denote the unit
mean of v,,.. Weknow that Ev,;*=0,*+ 0,°and that Ev, =
0, /T +0,% Solvethesetwo equationsfor o, and 0,*

(9) 07= T—Tl (Ev,2-Ev."?) and 6,2= (T Ev,”?- Ev._2)/(T-

1).

Then, substitutingsamplemomentsof fitted OL Sdisturbances
In place of the population moments will give consistent
estimates of the variance components. Thestepstodo FGL S
arethentofirstregressy on X andretrievethefitted residuals
v, and second, estimate Ev,* and Ev,? by the respective
formulas

1 Z v, and 1

NT n= t=1 N n=1
Third, substitute these expressions in (9) to estimate the
variance components and substitute the results into the L
matrix, carry out the data transfor mations unit by unit, and
run OL S on the transformed stacked data to get the FGL S
estimates. The variance component estimates above are the
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sameasin Greeneexcept for degr eesof freedom adjustments.
(Since only consistency of the estimates of 6, and 6,2 matter
for the efficiency of the FGL S estimator, unbiasedness is no
particular virtue. Finite sample monte carlo results on the
value of degrees of freedom adjustments are not compelling.
Thus, in most cases, it is probably not worth making these
adjustments.) The estimator of 6, can go negative in finite
samples. Theusual recommendation in thiscaseisto set the
estimator to zero and assume there are no individual effects.
Show asa (difficult) exercisethat if thea'sand u'sarenormal
and uncorrelated with each other, then the estimator s above
arethe maximum likelihood estimatorsfor the variances.
Supposethat instead of starting from theoriginal stacked
data, we had started from the within regression model
(10) Y =XB + v,

which contains the stacked deviations from unit means, and
constitutesN(T-1) observationsif redundant observationsare
excluded; and the between regression model

(11) y=Xp +V,

which contains the N stacked unit means. Provided the
coefficients are identified (e.g., each variable istime-varying
so that no columns of X are identically zero), one could
estimate 3 consistently by applying OL Sto either (10) or (11)
separately. Greene shows that the OLS estimator can be
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interpreted as a weighted combination of the within and
between OL S estimators, and that the GL S estimator can be
Inter preted asadifferent weighted combination that givesless
weight to the between model. For comparison, the fixed
effectsestimator of B wasgiven by thewithin regression only.

8. FIXED EFFECTSVERSUS RANDOM EFFECTS

In the (unusual) case that you need estimates of the
individual effects, you haveno choicebut to estimatethefixed
effects model; even then, you need T - +o to estimatethe o's
consistently. The fixed effects model has the advantage that
the estimates of 3 are consistent even if X is correlated with
the individual effects, provided of course that X and the
individual effects are uncorrelated with u. Its major
drawbacksarethat it usesup quite afew degreesof freedom,
and makes it impossible to identify the effects of time
invariant explanatory variables. The random effects model
economizes on degrees of freedom, and permits consistent
estimation of theeffectsof all explanatory variables, including
ones that are time-invariant, provided that all these
explanatory variablesareuncorrelated with thedisturbances.
(Thisis an advantage only if you have a convincing story to
support the identifying assumption that there is zero
correlation of these variablesand the t's.)
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AsT - +oo, the FE and RE estimators merge, and the FE
estimator can beinter preted asestimation of the RE model by
conditioning on therealized values of the &'s. From this, one
can see how to test the RE model specification by examining
thecorrelation of o and X. Oneway todothisistoregressthe
fitted o0 on X, and carry out a conventional F test that the
coefficients in thisregression are all zero. Unless T is very
large, or the assumption that o« is uncorrelated with X
particularly implausible, it isusually better to work with the
RE model.

9. SPECIFICATION TESTING

Standard regression model hypothesis testing of linear
hypotheseson model coefficients, usngWald, LR, or SSR test
statistics, carries over to the case of systems of regressions.
Thisismost transpar ent when the FGL Sestimatorsaregiven
by OLS applied to data that is transformed to give a
(asymptotically) scalar covariance matrix. Thissetup allows
one to test not only hypotheses about coefficients in one
equation, but also hypotheses connecting coefficients across
equations, or in the panel context, acrosstime.

For tests on covariance parameters, such as a test for
homoskedasticity across equations, or a test for serial
correlation, two useful waysto get suitabletest statisticsareto
proceed by analogy with single-indexed r egression problems,
and to derive LM statistics under the assumption that
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disturbances are normal. One example is a Durbin-Watson
like test for serial correlation in panel data, using the
estimated coefficient from a regression of v, on v, for n =
1,..Nandt=2,..T.

Exercise 2. Consider the panel data model in which T -
+oo, |f thedisturbancesareuncorrelated with theright-hand-
sidevariables, then both the FE and RE model estimates will
be consistent and the RE estimates will be efficient. On the
other hand, if thereis correlation between the disturbances
and theright-hand-side variables, only the FE estimates will
be consistent. From these observations, suggest a simple
specification test for the hypothesisthat the disturbancesare
uncorrelated with theright-hand-sidevariables. Use(10) and
(11) to show that this test is equivalent to a test for over-
Identifying restrictions.

Exercise 3: One of the ways a panel data model might
comeabout isfrom aregression model y,; = XYt + Un, Where
theynt arerandom coefficientsthat vary with n (or t). When
doesthismodel reduceto the standard panel data model with
random n effects? What are the generalizations of the
standard RE and FE estimatorswhen y,, =0 + K, + A,?

10. VECTOR AUTOREGRESSION
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Thegeneric systems of equations model (1) with nindexing
dependent variables and t indexing time, and with the
right-hand-side variables various lags of the dependent
variables, is called a vector autoregression (VAR) model. The
model may include current and lagged exogenous variables,
but is often applied to macroeconomic data where all the
variables in the analysis are treated as dependent variables.
Towriteout thelag structure, form the date-t vectors

V1t X, 0~ 0 Uy
V| _0 0 - Xy Uy,
and then
(12) V= XP+AY,+ ... FAY,;+ U,

where the A; are NxN arrays of lag coefficients. The VAR
assumption is that with inclusion of sufficient lags, the
disturbancesin (12) arei.i.d. innovationsthat are statistically
independent of X.V..Vi»... . In this case, the variables
XYi1 Y. @resaid to be strongly predetermined in (12). The
X, areoften assumed, further, to bestrongly exogenous, i.e., u,
Isstatistically independent of X, and all leads and lags of X..
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Thedynamicsof thesystem (12) aremost easily analyzed by
defining

Vi A, A, - A, A4
v, I, 0, - 0 0
yt: t-1 and A = J J J J |
Vg1 0, 0, [, 0y
and rewriting the system in theform
Xp U,
0 0
Yi = . + Ayt
0 0

Thesystem (12) with thestrongly exogenousfor cing variables
X, and the disturbances u, omitted, is a stable difference
equation if all thecharacteristicrootsof A arelessthan onein
modulus. The long-run dynamics of a stable system will be
dominated by thelar gest (in modulus) char acteristicroot of A,
and will havethefeaturethat theimpact ony, of ashock inthe
disturbance in a specified period eventually damps out.
Further,themost slowly decaying component in each variable
iny, will damp out at the samerate. (Thereisan exception if
the characteristic vector associated with the largest
characteristic root lies in a subspace spanned by a subset of
the variables)) Inthestablecase, i.i.d. innovations, combined
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with strongly exogenous variables that have a stationary
distribution, will producey, with astationary distribution. In
particular, the covariance matrix of y, will not vary with t, so
that they, arehomoskedastic. Theestimation and hypothesis
testing procedur esdiscussed in Section 3will then apply, with
the predetermined and strongly exogenous variables treated
the same. There will in general be contemporaneous
correlation, so that (12) has the structure of a seemingly
unrelated regressions problem for which GL S can be used to
obtain BLUE estimates of the coefficients. If the strictly
exogenousvariablesarethesamein every equation, thereare
no exclusion restrictions in the lag coefficients, and no
restrictions on coefficients across equations, GL S estimation
reducesto OL Sapplied to each equation separ ately, asbefore.

If A hasoneor moreroots of modulusoneor greater, then
theimpact of past disturbancesdoesnot damp out, thesystem
(12) is unstable, and the variance of y, rises with t. The
occurrence of modulus one (unit) roots seems to be fairly
common in macroeonomictimeseries. Statistical inferencein
such systems is quite different than in stable systems. In
particular, detection and testing for unit roots, and the
corresponding characteristic roots that determine
cointegrating relationships among the variables, require a
gpecial statistical analysis. Thetopic of testing for unit roots
and cointegrating relationships is discussed extensively by
Stock " Unit Roots, Structural Breaks, and Trends," and
Watson " Vector Autoregression and Cointegration,” both in
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R. Engleand D. McFadden, eds., Handbook of Econometrics
1V, 1994,

11. SYSTEM S OF NONLINEAR EQUATIONS

The systems of equations linear in variables and
parameters, with additivedistur bances, that wereintroduced
at the beginning of this chapter, can be extended easily to
systems that retain the assumption of additive distur bances,
but are nonlinear in variables and/or parameters:

(13) Yt = hn(Xnt’Bn) T Uy,

wheren=1,..,N,t=1,.,T, and B, isk,x1. Assume for the
following discussion that thedisturbancesu,, areindependent
for differentt. If thex, arestrongly predeter mined, implying
that E(u,,| %) =0, then each equation in (13) can be estimated
by nonlinear least squares. This can be interpreted as a
"limited information” or "marginal" GMM estimation
procedure in which information from the equations for the
remaining variables is not used. Chapter 3 discusses the
statistical properties of nonlinear least squares estimators.
In general, therewill be an efficiency gain from takinginto
account the covariance structure of the disturbances u,, for
different n. Thiscan bedone practically in TSP by using the
L SQ command applied to all theequationsin themodel. This
procedure then applies nonlinear least squares to each
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equation separately, retrieves fitted residuals, uses these
residualstoestimatethecovariancematrix of thedistur bances
at each t, and then does feasible generalized nonlinear least
squar es employing the estimated covariance matrix.
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