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SYSTEMS OF REGRESSION EQUATIONS

1.  MULTIPLE EQUATIONS

   ynt = xnt�n + unt,

n = 1,...,N, t = 1,...,T, xnt is 1×k, and �n is k×1.  This is a
version of the standard regression model where the
observations are indexed by the two indices n and t rather
than by a single index.  Applications are

� n indexes equations, with different dependent
variables, and t indexes observation units.  Example:
y1t,...,ynt are the input demands of firm t.  In this
example, there are likely to be parameters in common
across equations.
� n indexes observation units, t indexes time, and the
data come from a time-series of cross-sections.
Example: ynt is the income of household n in the Census
Public Use Sample in year t.
� n indexes observation units, t indexes time, and the
data come from a longitudinal panel of time series
observations on each observation unit.   Examples: ynt is
hours supplied by the head of household n in year t in
the Panel Study of Income Dynamics; or ynt is the excess
return on stock market asset n on day t in the CRISP
financial database.
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These problems may contain the usual litany of
econometric problems: (1) a non-scalar covariance matrix
due to heteroskedasticity across observation units, serial
correlation over time, or covariance across equations
within an observation unit; and (2) the potential for
correlation of explanatory variables and disturbances
when x includes lagged dependent variables.  They also
provide an opportunity for a richer analysis of covariance
patterns, since observations across units can be used to
identify covariance patterns over time, and observations
across time can be used to identify heteroskedasticities
across units.

2.  STACKING THE DATA

For analysis (and computation), it is useful to organize
the observations in vectors in which all the observations
for n = 1 are stacked on top of all the observations for n =
2, etc.  Use the notation:

   yn = , Xn = , un = , 
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y =  = X =  = , 

� = , u = 

Then, the system can be written

yn = xn�n + un , n = 1,...,N

or in stacked form,

(1)                                              y = X� + u .

The vector yn is of dimension T×1, the array Xn is of
dimension T×k, the vector y is of dimension NT×1, the
array X is of dimension NT×Nk.  We wrote down the
system assuming the number of parameters k was the
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same in each equation, but this is not necessary.  One
could have Xn of dimension T×kn and X of dimension
NT×(k1+..+kn).  If there are parameters in common across
different equations, then the corresponding explanatory
variables will be stacked in the same column rather than
placed in different columns, and the overall number of
columns in X reduced accordingly.

Suppose the observations are independent and
identically distributed for different t, but the covariances
E(untumt) = �nm are not necessarily zero.  Let � = (�nm) be
the N×N array of covariances of the observations for each
t.  The covariance matrix of the stacked disturbance vector
u is then

E(uu�) = ,

where IT denotes a T×T identity matrix.

Define the Kronecker Product A�B of a n×m matrix

A and a p×q matrix B:
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A�B = .

Then, A�B is (np)×(mq).  Kronecker products have the
following properties:

(A�B)(C�D) = (AC)�(BD) when the matrices are
commensurate
(A�B)-1 = (A-1)�(B-1) when A and B are square and
nonsingular
(A�B)� = (A�)�(B�)
trace(A�B) = (trace(A))�(trace(B)) when A and B are
square
det(A�B) = (det(A))p(det(B))n when A is n×n and B is
p×p

Applying the Kronecker product notation to the
covariance matrix of u, E(uu�) = ��IT.

3.  ESTIMATION

The problem of estimating the stacked model y = X�
+ u when the covariance matrix of the disturbances is
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��IT and � is known is a straightforward GLS problem,
provided there are no additional complications of
correlation of explanatory variables and disturbances.
Using the rule for inverses of Kronecker products, the
GLS estimator is

b = (X�(�-1�IT)X)-1X�(�-1�IT)y .

Computationally, the most practical way to do this
regression is to calculate a triangular Cholesky matrix L
such that L�L = �-1.  Then, the transformed model

(2)            (L�IT)y = (L�IT)X� + (L�IT)u

satisfies Gauss-Markov conditions (Verify), and the BLUE
estimator of � is OLS applied to this equation.  The data
transformations can be carried out separately for each t,
and recursively for n = 1,...,N.

When � is unknown, one can do FGLS estimation:
First apply OLS to (1) and retrieve fitted residuals û.
Then, estimate the elements �nm of � from the average
(over T) of the squares and cross-products of the fitted
residuals,

   snm= ûntûmt .
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Finally, apply OLS to (2), with L a Cholesky factor of the
estimated �-1.

The problem of estimating � in (1) when there are no
cross-equation restrictions on the �n is called the seemingly
unrelated regressions problem.  Summarizing, the �n can
be estimated consistently equation-by-equation using OLS;
in most cases, this is inefficient compared to GLS; and
FGLS is asymptotically fully efficient.  There is one case in
which there is no efficiency gain from use of GLS rather
than OLS: Suppose no cross-equation restrictions on
parameters and common explanatory variables across
equations; i.e., X1 = X2 = ...  = XN.  Then, X = IN�X1, and
the GLS estimator is

b = ((IN�X1�)(�
-1�IT)(IN�X1))

-1(IN�X1�)(�
-1�IT)y .

As an exercise, use the Kronecker product rules to show
that this formula reduces to the OLS estimator bn =
(X1�X1)

-1X1�yn for each n.  Intuitively, the reason OLS is
efficient in this case is that the OLS residuals in, say, the
first equation are automatically orthogonal to the
(common) exogenous variables in each of the other
equations, so that there is no additional information on the
first equation parameters to be distilled from the cross-
equation orthogonality conditions.  Put another way, GLS
can be interpreted as OLS applied to linear combinations
of the original equations, with the linear combinations
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obtained from the Cholesky factorization of the covariance
matrix of the disturbances.  But these linear combinations
of the common exogenous variables leaves one with the
same exogenous variables, and the orthogonality
conditions satisfied by the GLS estimates are the same as
the orthogonality conditions satisfied by OLS on the first
equation in the original system.

4.  AN EXAMPLE

Suppose a firm t utilizes N = 3 inputs, and has a
Diewert unit cost function,

   Ct = �ij  ,

where pit is input i price, and the �'s are nonnegative
parameters with �ij = �ji. By Shephard's lemma, the unit
input demand functions are given by the derivatives of the
unit cost function with respect to the input prices:

znt = �nj  .

Written in stacked form, these equations become 
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 =

+

,

where 1T denotes a T×1 vector of 1's and  denotes

a T×1 vector with components .  Note that the

parameter restrictions across equations lead to variables
appearing stacked in the same column.  The disturbances can
be interpreted as coming from random variations across firms
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around the respective "average"  parameters �11, �22, �33.  The
interesting econometric feature of this setup is that even if
there is considerable multicollinearity in prices so that OLS
equation by equation is imprecise, this multicollinearity is
broken when the data are stacked.  Then, there is likely to be
a substantial efficiency gain from estimating the equations in
stacked form with the cross-equation restrictions imposed,
even at the first OLS stage before the additional efficiency
gain from the second-stage FGLS is achieved.

5.  PANEL DATA

The application of systems of regressions equations to
panel data, where n indexes observation units that are
followed over time periods t, is very important in economics.
 A typical model for panel data is

   ynt = xnt� + �n + unt  for n = 1,...,N and t = 1,...,T .

In this model, the � parameters are not subscripted by n or t;
this implies they are the same for every unit and every time
period.  (This is not as restrictive as it might appear, because
variation in parameters over time or with some characteristics
of the units can be reintroduced by including in the x's
interactions with time dummies or with unit dummies.) The �n

are termed individual effects.  They may be treated as
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intercept terms that vary across units.  The model with this
interpretation is called a fixed effects (FE) model.  Alternately,
the �n may be interpreted as components of the disturbance
that vary randomly across units.  The model with the second
interpretation is called a random effects (RE) model.  Often,
the assumption is made that once the individual effects are
isolated, the remaining disturbances unt are independent and
identically distributed across n as well as t.  Alternately, the unt

could be serially correlated; this requires another layer of
calculation for GLS.

The questions that arise in analysis of the panel data
model are (a) under what conditions the model parameters
can be estimated consistently, in either the fixed effects or the
random effects interpretation; (b) what is the form of
consistent or efficient estimators; and (c) whether the random
effects or the fixed effects model is "better" in applications.  I
first analyze the fixed effects case, then the random effects
case, and after this return to these questions to see what can be
said.  

6.  FIXED EFFECTS 

The fixed effects model can be rewritten by stacking the
T observations on unit n,

(3)                                yn = xn� + 1T�n + un ,
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where 1T is a T×1 vector of ones.  Equation (3) is a special case
of a general system of regression equations, and can be
approached in the same way.  Stacking the unit data, first unit
followed by second unit, etc., gives the stacked model

(4)                                y = X� + D� + u ,

where D = [d1 d2 ...  dN] is a NT×N array whose columns are
dummy variables such that dm is one for observations from
unit m, and zero otherwise, and � is a N×1 vector with
components �n.  (Exercise: Verify that this setup follows from
the general stacking pattern shown in Section 2.)

In (4), note first that any column of X that does not
change over t, within the observations for a unit, is linearly
dependent on the columns of D.  Then, when there are fixed
effects, there is no possibility of identifying the separate effects
of X variables that are time-invariant.  Suppose we remove
any such columns from X, so that only time-varying variables
are left.  For good measure, we can also remove from X the
within-unit means of the X variables, so that X now denotes
deviations from within-unit means.  The model (3) can be
rewritten as a relationship in unit means plus relationships in
deviations from within unit means:

(5)                                       �yn = �n + �un 
(6)                                       Yn = Xn� + �n,
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where y�n and �n are unit means, Yn is a vector of deviations of
the unit n observations from the unit mean, and Xn  is an
array of deviations that has zero unit means by construction.
Stack these models further, with the unit one data followed by
the unit two data, etc., to obtain

(7)                       = � + .

The deviations in (7) eliminate the fixed effects.  Then, (7) can
be estimated by OLS, which is consistent for � as N � +� or T
� +� or both.  (Note that (7) has one redundant observation
for each observation unit, since the within group deviations
must sum to zero.  One can eliminate any one of the
observations in each unit, or alternately leave it in the
regression and remember that the number of observations is
really N(T-1) rather than NT.) The regression (7) is called the
within regression.  One can estimate the fixed effect for each
unit n using the formula �n = y�n; this is called the between
regression.  The fixed effects are estimated consistently only if
T � +�.

The particularly simple formula above for the fixed effects
estimates came from normalizing the x's to have zero
within-unit means.  In the general case where the x's can have
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non-zero unit means, the fixed effect estimators become �n =
y�n - x�nb, where b is the vector of estimates from (7).

Exercise 1: Using the projection notation QD = I -
D(D�D)-1D�, note that the OLS estimator of � in (4) is b =
(X�QDX)-1X�QDy.  Show that this is the same as the within
estimator of �.

7.  RANDOM EFFECTS

Suppose the �'s in (3) are treated as components of the
disturbance, so that (3) can be rewritten as y = X� + �, where
�nt = �n + unt.  Then, an OLS regression of y on X yields a
consistent estimator of � as NT � +�, provided the x's and the
disturbances are uncorrelated.  The covariance matrix of the
stacked disturbances is now E(���) = IN��, where � is the
T×T matrix of covariances of the disturbances �n + unt for
given n, with the form

(8)      � =  � ��
21T1T� + �u

2IT

.
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Efficiency of estimation can be improved by GLS.  Verify as
an exercise that L = (IT - �1T1T�)/�u, with � = (1 - �u/(�u

2+T
��

2)1/2)/T, satisfies L�L� = IT.  Then, GLS is the same as OLS
applied to the transformed data (IN�L)y = (IN�L)X� +
(IN�L)�.  In practice, � is unknown and FGLS must be used.
Intuition for how to estimate ��

2 and �u
2 can be obtained from

an analogy to population moments.  Let �n
* denote the unit

mean of �nt.  We know that E�nt
2 = �u

2 + ��
2 and that E�n

*2 =
�u

2/T + ��
2.  Solve these two equations for �u

2 and ��
2: 

(9)    �u
2 = (E�nt

2 - E�n
*2)  and  ��

2 = (T E�n
*2 - E�nt

2)/(T-

1).
Then, substituting sample moments of fitted OLS disturbances
in place of the population moments will give consistent
estimates of the variance components.  The steps to do FGLS
are then to first regress y on X and retrieve the fitted residuals
vnt, and second, estimate Evnt

2 and Evn
*2 by the respective

formulas

 and          

Third, substitute these expressions in (9) to estimate the
variance components and substitute the results into the L
matrix, carry out the data transformations unit by unit, and
run OLS on the transformed stacked data to get the FGLS
estimates.  The variance component estimates above are the
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same as in Greene except for degrees of freedom adjustments.
(Since only consistency of the estimates of ��

2 and �u
2 matter

for the efficiency of the FGLS estimator, unbiasedness is no
particular virtue.  Finite sample monte carlo results on the
value of degrees of freedom adjustments are not compelling.
Thus, in most cases, it is probably not worth making these
adjustments.)  The estimator of ��

2 can go negative in finite
samples.  The usual recommendation in this case is to set the
estimator to zero and assume there are no individual effects.
Show as a (difficult) exercise that if the �'s and u's are normal
and uncorrelated with each other, then the estimators above
are the maximum likelihood estimators for the variances.  

Suppose that instead of starting from the original stacked
data, we had started from the within regression model
(10)                                            Y = X� + �*,

which contains the stacked deviations from unit means, and
constitutes N(T-1) observations if redundant observations are
excluded; and the between regression model

(11)                                            y� = x�� + ��, 

which contains the N stacked unit means.  Provided the
coefficients are identified (e.g., each variable is time-varying
so that no columns of X are identically zero), one could
estimate � consistently by applying OLS to either (10) or (11)
separately.  Greene shows that the OLS estimator can be
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interpreted as a weighted combination of the within and
between OLS estimators, and that the GLS estimator can be
interpreted as a different weighted combination that gives less
weight to the between model.  For comparison, the fixed
effects estimator of � was given by the within regression only.

8.  FIXED EFFECTS VERSUS RANDOM EFFECTS

In the (unusual) case that you need estimates of the
individual effects, you have no choice but to estimate the fixed
effects model; even then, you need T � +� to estimate the �'s
consistently.  The fixed effects model has the advantage that
the estimates of � are consistent even if X is correlated with
the individual effects, provided of course that X and the
individual effects are uncorrelated with u.  Its major
drawbacks are that it uses up quite a few degrees of freedom,
and makes it impossible to identify the effects of time-
invariant explanatory variables.  The random effects model
economizes on degrees of freedom, and permits consistent
estimation of the effects of all explanatory variables, including
ones that are time-invariant, provided that all these
explanatory variables are uncorrelated with the disturbances.
(This is an advantage only if you have a convincing story to
support the identifying assumption that there is zero
correlation of these variables and the �'s.)
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As T � +�, the FE and RE estimators merge, and the FE
estimator can be interpreted as estimation of the RE model by
conditioning on the realized values of the �'s.  From this, one
can see how to test the RE model specification by examining
the correlation of � and X.  One way to do this is to regress the
fitted � on X, and carry out a conventional F test that the
coefficients in this regression are all zero.  Unless T is very
large, or the assumption that � is uncorrelated with X
particularly implausible, it is usually better to work with the
RE model.

9.  SPECIFICATION TESTING

Standard regression model hypothesis testing of linear
hypotheses on model coefficients, using Wald, LR, or SSR test
statistics, carries over to the case of systems of regressions.
This is most transparent when the FGLS estimators are given
by OLS applied to data that is transformed to give a
(asymptotically) scalar covariance matrix.  This setup allows
one to test not only hypotheses about coefficients in one
equation, but also hypotheses connecting coefficients across
equations, or in the panel context, across time.

For tests on covariance parameters, such as a test for
homoskedasticity across equations, or a test for serial
correlation, two useful ways to get suitable test statistics are to
proceed by analogy with single-indexed regression problems,
and to derive LM statistics under the assumption that
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disturbances are normal.  One example is a Durbin-Watson
like test for serial correlation in panel data, using the
estimated coefficient from a regression of vnt on vn,t-1 for n =
1,...N and t = 2,...,T.

Exercise 2:  Consider the panel data model in which T �
+�.  If the disturbances are uncorrelated with the right-hand-
side variables, then both the FE and RE model estimates will
be consistent and the RE estimates will be efficient.  On the
other hand, if there is correlation between the disturbances
and the right-hand-side variables, only the FE estimates will
be consistent.  From these observations, suggest a simple
specification test for the hypothesis that the disturbances are
uncorrelated with the right-hand-side variables.  Use (10) and
(11) to show that this test is equivalent to a test for over-
identifying restrictions.

Exercise 3:  One of the ways a panel data model might
come about is from a regression model ynt = xnt	nt + unt, where
the 	nt are random coefficients that vary with n (or t).  When
does this model reduce to the standard panel data model with
random n effects?  What are the generalizations of the
standard RE and FE estimators when 	nt = 
 + �n + �t?

10. VECTOR AUTOREGRESSION
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The generic systems of equations model (1) with n indexing
dependent variables and t indexing time, and with the
right-hand-side variables various lags of the dependent
variables, is called a vector autoregression (VAR) model.  The
model may include current and lagged exogenous variables,
but is often applied to macroeconomic data where all the
variables in the analysis are treated as dependent variables.
To write out the lag structure, form the date-t vectors

     yt =  , Xt =  , ut =  ,

and then

(12)     yt = Xt� + A1yt-1 + ... + AJyt-J + ut,

where the Aj are N×N arrays of lag coefficients.  The VAR
assumption is that with inclusion of sufficient lags, the
disturbances in (12) are i.i.d. innovations that are statistically
independent of Xt,yt-1,yt-2,... .  In this case, the variables
Xt,yt-1,yt-2,... are said to be strongly predetermined in (12).  The
Xt are often assumed, further, to be strongly exogenous; i.e., ut

is statistically independent of  Xt and all leads and lags of Xt.
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The dynamics of the system (12) are most easily analyzed by
defining  

yt =     and      A =  ,

and rewriting the system in the form

yt  =  + Ayt-1 + .

The system (12) with the strongly exogenous forcing variables
Xt and the disturbances uy omitted, is a stable difference
equation if all the characteristic roots of A are less than one in
modulus.  The long-run dynamics of a stable system will be
dominated by the largest (in modulus) characteristic root of A,
and will have the feature that the impact on yt of a shock in the
disturbance in a specified period eventually damps out.
Further, the most slowly decaying component in each variable
in yt will damp out at the same rate.  (There is an exception if
the characteristic vector associated with the largest
characteristic root lies in a subspace spanned by a subset of
the  variables.)  In the stable case, i.i.d. innovations, combined
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with strongly exogenous variables that have a stationary
distribution, will produce yt with a stationary distribution.  In
particular, the covariance matrix of yt will not vary  with t, so
that the yt are homoskedastic.  The estimation and hypothesis
testing procedures discussed in Section 3 will then apply, with
the predetermined and strongly exogenous variables treated
the same. There will in general be contemporaneous
correlation, so that (12) has the structure of a seemingly
unrelated regressions problem for which GLS can be used to
obtain BLUE estimates of the coefficients.  If the strictly
exogenous variables are the same in every equation, there are
no exclusion restrictions in the lag coefficients, and no
restrictions on coefficients across equations, GLS estimation
reduces to OLS applied to each equation separately, as before.

If A has one or more roots of modulus one or greater, then
the impact of past disturbances does not damp out, the system
(12) is unstable, and the variance of yt  rises with t.  The
occurrence of modulus one (unit) roots seems to be fairly
common in macroeonomic time series.  Statistical inference in
such systems is quite different than in stable systems.  In
particular, detection and testing for unit roots, and the
corresponding characteristic roots that determine
cointegrating relationships among the variables, require a
special statistical analysis.  The topic of testing for unit roots
and cointegrating relationships is discussed extensively by
Stock "Unit Roots,  Structural Breaks, and Trends," and
Watson "Vector Autoregression and Cointegration," both in
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R. Engle and D. McFadden, eds., Handbook of Econometrics
IV, 1994.

11. SYSTEMS OF NONLINEAR EQUATIONS

The systems of equations linear in variables and
parameters, with additive disturbances, that were introduced
at the beginning of this chapter, can be extended easily to
systems that retain the assumption of additive disturbances,
but are nonlinear in variables and/or parameters:

(13)     ynt = hn(xnt,�n) + unt,

where n = 1,...,N, t = 1,...,T, and �n is kn×1.  Assume for the
following discussion that the disturbances unt are independent
for different t.  If the xnt are strongly predetermined, implying
that E(unt�xnt) = 0, then each equation in (13) can be estimated
by nonlinear least squares.  This can be interpreted as a
"limited  information" or "marginal" GMM estimation
procedure in which information from the equations for the
remaining variables is not used.  Chapter 3 discusses the
statistical properties of nonlinear least squares estimators.  

In general, there will be an efficiency gain from taking into
account the covariance structure of the disturbances unt for
different n.  This can be done practically in TSP by using the
LSQ command applied to all the equations in the model.  This
procedure then applies nonlinear least squares to each
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equation separately, retrieves fitted residuals, uses these
residuals to estimate the covariance matrix of the disturbances
at each t, and then does feasible generalized nonlinear least
squares employing the estimated covariance matrix.


