Example 1. Market for Ph.D. economists.

g = log number employed,

w =log wagerate,

s = log college enrollment

m = log median wage of lawyers.

demand in year t

(1) d: = Bll + BlZS( + Bl3Wt T &5
supply in year t
(2) O = Py + Boomy + BoaW, + Poglis + € ;

structural ssmultaneous equations system.

college enrollments s and lawyer salariesm, are
exogenous. (1) and (2) are a complete system for the
deter mination in market equilibrium of the two
endogenous or dependent variables g, and w,.



Fig. 1. Demand & Supply of Economis
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Figure 1 showsthe demand and supply curves
corresponding to (1) and (2), with w and g determined by
mar ket equilibrium. Two years are shown, with solid
curvesin thefirst year and dashed curvesin the second.
The equilibrium wage and quantity are determined by the
condition that the market clear.



Suppose you areinterested in the demand equation, and
have data on the variables appearingin (1) and (2). How
could you obtain good statistical estimates of the demand
equation parameters?

Think of the “experiment” run by Nature, versusthe
experiment that you would ideally liketo carry out to
form the estimates.

|f both the demand and supply curves shift between
periods dueto random distur bances, then the locus of
equilibria will be a scatter of points (in this case, two)
which will not in general liealong either the demand curve
or the supply curve. Inthecaseillustrated, the dotted line
which passesthrough the two observed equilibria hasa
sope substantially different than the demand curve. If the
disturbances mostly shift the demand curve and leave the
supply curve unchanged, then the equilibria will tend to
map out the supply curve. Only if the disturbances mostly
shift the supply curve and leave the demand curve
unchanged will the equilibria tend to map out the demand
curve.



Consequences.

An OL Sfit of equation (1) will produce alinelikethe
dotted linein thefigurethat isa poor estimate of the
demand curve. Only when most of the shiftsover timeare
coming in the supply curve so that the equilibrialie along
the demand curve will least squares give satisfactory
results.

Exogenous variables shift the demand and supply curvein
waysthat can be estimated. In particular, thevariablem
that appearsin the supply curve but not the demand curve
shiftsthe supply curve, so that the locus of w,q pairs swept
out when only m changes lies along the demand curve.
Theideal experiment you would liketorun in order to
estimate the slope of the demand curveistovary m,
holding all other things constant. Put another way, you
need to find a statistical analysisthat mimicsthe ideal
experiment by isolating the partial impact of the variable
m on both g and w.



The structural system (1) and (2) can be solved for g, and
w, as functions of the remaining variables

B Bay + Bos, — Boom, = Prug, 1 + 8,78y,

(3) Wi =
B23 a B13
(4) g; = BiiPoBoiPys+ BZEB 12S_t _ﬁBBBzzmt = BsPasd,y

- €
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Equations (3) and (4) are called the reduced form. For this

solution to exist, we need B, - ;3 non-zero. This will
certainly be the case when the elasticity of supply B is
positive and the elasticity of demand [,; is negative.
Hereafter, assumethat thetrue 3,5 - 313> 0.

Equations (3) and (4) constitute a system of regression
equations, which could berewritten in the stacked form
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or
y=4ZT+V,

where the w's are the combinations of behavioral
coefficients, and the v's are the combinations of
disturbances, that appear in (3) and (4). Thesystem (5) can
beestimated by GLS. In general, thedisturbancesin (5) are
correlated and heteroskedastic across the two equations.
However, exactly the same explanatory variables appear in
each of the two eguations. |If the disturbances are
uncorrelated acrosstime, so that Ev, v, = 0;0,, or Evv’ =
|-®2, then GL Susing this covariance structure collapsesto
OLS, the seemingly unrelated regression case.



Suppose you are interested in estimating the parameters of
the behavioral demand equation (1). For OLSappliedto(1)
to be consistent, it is necessary that the disturbance €, be
uncorrelated with the right-hand-side variables, which are
s and w,. Thiscondition ismet for s, provided it isindeed
exogenous. However, from (3), an increase in €, increases
w,, other things being equal, and in (1) this results in a
positive correlation of the RHS variable w, and the
disturbance €,.

| nstrumental variables estimation is one alter native for
the estimation of (1). In thiscase, one needsto introduce at
least as many instrumental variables as there are RHS
variablesin (1), and these variables need to be uncorrelated
with €,, and fully correlated withtheRHSvariables. Thelist
of instrumentsshould includetheexogenousvariablesin (1),
which are the constant, 1, and s. Other candidate
Instrumentsarethe exogenousand predetermined variables
elseawherein the system, m, and g, ;.



Will 1V work? Ingeneral, tohaveenoughinstruments, there
must be at least as many predetermined variables excluded
from (1) and appearing elsewherein thesystem asthereare
endogenous variableson the RHS of (1). When thisistrue,
(1) issaid to satisfy the order condition for identification. In
the example, thereisone RHS endogenousvariable, w,, and
two excluded exogenous and predetermined variables, m,
and q,,, so the order condition is satisfied. If there are
enough instruments, then from the general theory of 1V
estimation, the most efficient 1V estimator is obtained by
first projecting the RHS variables on the space spanned by
the instruments, and then using these projections as
Instruments. In other words, the best combinations of
Instruments are obtained by regressing each RHS variable
In (1) ontheinstruments1, s, m,, and ¢,_,, and then using the
fitted valuesfrom these regressions asinstruments. But the
reduced form eguation (3) is exactly this regression.
Therefore, the best 1V estimator is obtained by first
estimating the reduced form equations (3) and (4) by OLS
and retrieving fitted values, and then estimating (1) by OL S
after replacing RHS endogenous variables by their fitted
valuesfrom thereduced form. For thistoyield instruments
that arefully correlated with the RHS variables, it must be
truethat at least one of thevariablesm, and g, , truly enters
the reduced form, which will happen if at least one of the
coefficients 3,, or [3,, is nonzero. This is called the rank
condition for identification.



2. STRUCTURAL AND REDUCED FORM S

In general a behavioral or structural smultaneous
eqguations system can be written

(6) y./B+z'I'=¢/,

where y,” = (Y4, Yo IS @ 1xN vector of the endogenous
variables, B isa NxN array of coefficients, z,' = (2,1, .,Zy) IS
a1xM vector of predetermined variables, I'isaM xN array
of coefficients, and €.’ isa 1xN vector of disturbances. Let
2 denote the NxN covariance matrix of €. The reduced
form for thissystemis

(7) y. =711 + v/,

where Il = - I'B* and v, = €,'B™, so that the covariance
matrix of v, is Q = B'*2B®.  Obvioudy, for (6) to be a
well-defined system that determinesy,, it isnecessary that B
be non-singular.



3. IDENTIFICATION

Some restrictions must be imposed on the coefficient
arrays B and I', and possibly on the covariance matrix 23, if
the remaining coefficients are to be estimated consistently.
First, post-multiplying (6) by a nonsingular diagonal matrix
leaves the reduced form solution (7) unchanged, so that all
versons of (6) that are rescaled In this way are
observationally equivalent. Then, for estimation of (6) it is
necessary to have a scaling nor malization for each equation.
B, I', and 2 contain N(N-1) + NM + N(N+1)/2 parameters,
excludingtheN parameter sset by thescaling nor malizations
and takinginto account thesymmetry of 2. However, II and
Q2 contain only NM + N(N+1)/2 parameters. Therefore, an
additional N(N-1) restrictions on parameters are necessary
to determinetheremaining structural parametersfrom the
reduced form parameters.

It istraditional to define order and rank conditions for
Identification. These come from the structure of the B and
I'' matrices and the conditionsIIB + I' =0 and B'Q2B = X
relating the reduced form coefficients to the structural
parameters. But it is simpler to think of identification in
termsof the possibility for IV estimation: An equation (with
associated restrictions) is identified if and only if there exists
a consistent IV estimator for the parameters in the equation;
I.e., if therearesufficient instrumentsfor the RHSendogenous
variables that are fully correlated with these variables.



Even covariance matrix restrictions can be used in
constructing instruments. For example, if you know that the
disturbance in an eguation you are trying to estimate is
uncorrelated with thedisturbancein another equation, then
you can useaconsistently estimated residual fromthesecond
equation asan instrument. If you arenot embarrassed tolet
a computer do your thinking, you can even leave
Identification to be checked numerically: an eguation is
Identified if and only if you can find an 1V estimator for the
equation that empirically hasfinite variances.

Exercise 1. Show that the condition above requiring
N(N-1) restrictions on parameters will hold if the order
condition, introduced in the example of the market for
economists, holdsfor each equation. Inthegeneral case, the
order condition for an equation states that the number of
excluded predetermined (including strictly exogenous)
variablesisat least asgreat asthe number of included RHS
endogenous variables. Add the number of excluded RHS
endogenousvariablesto each sideof thisinequality, and sum
over equationsto get theresult.



4.25L S

For discussionsof estimator sfor ssimultaneousequations
systems, it isconvenient to haveavailablethe systems(6) and
(7) stacked two different ways. First, one can stack (6) and
(7) vertically by observation to get

(8) YB+ZzZI['=¢
and
(9) Y=ZII+v,

where Y, €, and v are TxN and Z is TxK. With this
stacking, one has Ee’'e/T = 2 and Ev'v/T = B*2B'*. Note
that post-multiplying (8) by a non-singular diagonal matrix
leavesthereduced form unchanged; hencethismodification
IS observationally equivalent. Then, we can choose any
convenient diagonal matrix as a normalization. In
particular, wecan renumber the equationsand rescalethem
so that the dependent variabley,, appearswith a coefficient
of onein then-th equation. Thisisequivalent to saying that
wecan writeB =1 - A, where A isamatrix with zerosdown
the diagonal, and that the behavioral system (8) can be
written

(10) Y:YA-ZI‘+az[Y|Z][_AP] = XC +e¢.

In this setup, Y and € are TxN, X is Tx(N+K), and C is
(N+K)xN.



Restrictions that exclude some variables from some
equationswill for ce some of the parametersin C to be zero.
Rewritethen-th equation from (10), takingtheserestrictions
Into account, as

(11) Yn= YnAn B Zn:[‘n + € = XnCn + €ns
wher e this equation includes M, endogenous variables and

K, predetermined variablesontheRHS. Then,y,isTx1,Y,
ISTxM,,and Z,isTxK,, and X, isTx(M +K,).



A second method of stacking which is more convenient for
empirical work istowritedown all the observationsfor the
first equation, followed by all the obser vationsfor the second
equation, etc. This amounts to starting from (11), and
stacking the T observations for the first equation, followed
by the T observationsfor the second equation, etc. Sincethe
C, differ across equations, the stacked system looks like

N -Xl
y X, .. 0] €

(12) L L | U ] Ry
Yy 0O 0 .. XN_ cyl  |Ex

Notethat X in (12) isnot the same as X in (10); X isNTxJ,
wheredJ=J,+. +Jyand J, =M, + K isthenumber of RHS
variables in the n-th equation. The system (12) has the
appear ance of a system of regression equations. Because of
RHS endogenous variables, OL S will not be consistent, so
that we haveto turn to IV methods. In addition, thereare
GL S issues due to the correlation of disturbances across
eqguations.



Suppose you are interested in estimating a single
equation from the system, say

yi= YA -Z, ', +& = Xc, +e&,.

The IV method states that if you can find instruments W
that are uncorrelated with €, and fully correlated with X,
then the best |V estimator,

¢, = [ X' W(W'W)' WX X, "W(W W)W 'y,

Isconsistent. But thepotential instrumentsfor thisproblem
are Z = [Z, | Z,], where Z_ denotes the predeter mined
variablesthat arein Z, but not in Z,. Theorder condition for
Identification of thisequation isthat thenumber of variables
In Z_, beat least aslargeasthe number of variablesin Y, or
the number of excluded predetermined must be aslarge asthe
number of included RHS endogenous. Therank condition is
that X,;" W be of maximum rank. For consistency, you need
to have X;"W/T converging in probability to a matrix of
maximum rank.

Exercise 2. Show that the rank condition implies the
order condition. Show in the supply and demand for
economiststhat the order condition can be satisfied, but the
rank condition can fail, so that the order condition is
necessary but not sufficient for the rank condition.



The best 1V estimator can be written ¢; = [ X' X "™ X'VY4,
where X,. = W(W'W)*W'X, isthe array of fitted values
froman OLSregression of X, ontheinstrumentsW =Z7; i.e,,
the reduced form regression. Then, the estimator has a
two-stage OL S (2SL S) inter pretation:

(1) Estimatethereduced form by OL S, and retrievethe
fitted values of the endogenous variables.

(2) Replace endogenous variables in a behavioral
equation by their fitted values from the reduced form,
and apply OLS.

Recall from the general 1V method that the procedure
above done by conventional OLS programs will not
produce consistent standard errors. Correct standard
errorscan be obtained by first calculating residuals from
the 2SL Sestimatorsin theoriginal behavioral model, u, =
y, - X;€,qs estimating 6% = u,'u/(T-K,), and then
estimating V(C,g <) = 67X, "X ] ™



5.39LS

The 2SL S method does not exploit the correlation of
the disturbances across equations. Y ou saw in the case of
systems of regression equations that using FGLS to
account for such correlations improved efficiency. This
will also betruehere. Tomotivate an estimator, write out
all the moment conditions available for estimation of each
eqguation of the system:

Z'y,] Z'Xl 0 .. 0 || Z'e
Z'y 0 ZX,.. 0 |le,| |Ze
(13) 2 _ 2 | 2 N 2
Zyyl | 0 0 . ZXle | |Z'e,

or
(In®Z)y= [(Iy®Z")X]c + (1y®Z")e.

The disturbances in the NKx1 system (13) have the

covariancematrix 2®(Z'Z). Then, by analogy to GL S, the
best estimator for the parametersshould be

CasLs= {X'(IN@’Z)(Z_I‘S’(Z'Z)_ X'(IeZ) (& e(Z'Z) ) (IneZ")y

= {X' ORIV VAVA N A ))X}‘1 X'(Z*(Z(Z2'2)HZ))y .



Thisestimator can beobtained in three OL Sstages, hence
Its name;
(1-2) Do 2SL S on each equation of the system, and
retrievetheresidualscalculated at the 2SL S estimators
and the original (not thefitted) RHS variables.
(3) Estimate 2 from the residuals just calculated, and
then do FGLS regression of y on X using the GLS
weighting matrix 2'®(Z(2'2)HzZ").
The large-sample approximation to the covariance
matrix for Csq 5 is, from theusual GL Stheory,

(15) V(s = X E'e@Z2 'z)x" .

The FGL Sthird stagefor the 3SL S estimator can be done
conveniently by a OLS on transformed data. Let L bea
lower triangular Cholesky factor of 2.* and Q be alower
triangular Cholesky factor of (Z(Z'Z)Y)Z’. Then
(LeQ)(L®Q) = 2.'®(Z(Z2'2)1Z"). Transform (L®Q)y
= (L®Q)Xc + mn and apply OL S to this system to get the
3SL S estimators.

The main advantage of 3SLS over 2SLSisa gain in
asymptotic efficiency. The main disadvantage isthat the
estimatorsfor asingleequation arepotentially lessrobust,
sincethey will beinconsistent if thelV assumptionsthat Z
Ispredeter mined fail in any equation, not just aparticular
one of interest.



6. TESTING FOR OVER-IDENTIFYING RESTRICTIONS

Consider an equation y = X[ + u from a system of
simultaneous equations, and let W denote the array of
Instruments (exogenous and predeter mined variables) in
the system. Let X" = P, X denote the fitted values of X
obtained from OL Sestimation of thereduced form; where
Py = W(W'W) W'’ is the projection operator onto the
space spanned by W. Theeguation isover-identified if the
number of instruments W exceeds the number of
right-hand-side variables X. From Chapter 3, the GMM
test statistic for over-identification isthe minimumin [3 of

2nQ,(B) = u'Py, u/6* = u'Py. u/g®+ u’(P, - Py.)u/a?,

whereu =y - Xf3. Onehasu’(Py, - Py.)u =y'(Py - Py.)y,
and at the minimum in 3, u’Py.u =0, so that

2nQ, =y’ (Py, - Px.)y/0%.

Under H,, this statistic is asymptotically chi-squared
distributed with degr eesof freedom equal tothedifference
inranksof W and X™. Thisstatisticisthedifferencein the
sum of squared residualsfrom the2SL Sregression of y on
X and thesum of squared residualsfromthereduced form
regression of y on W, normalized by o2



A computationally convenient equivalent form is

A

2nQ, = [ Jw - ¥x-I710?,

the sum of squares of the difference between the reduced
form fitted values and the 2SLS fitted values of v,
normalized by ¢ Finally, 2nQ,, = y'Q,.P,Qx.y/0* =
nR?%/a6?, where R? is the multiple correlation coefficient
fromregressingthe2SL Sresidualson all theinstruments;
this result follows from the equivalent formulas for the
projection onto the subspace of W orthogonal to the
subspace spanned by X™. Thistest statistic does not have
aversion that can bewritten asa quadratic form with the
wingscontaining adifference of coefficient estimatesfrom
the 2SL S and reduced form regressions. Note that if the
equation is just identified, with the number of proper
Instruments excluded from the equation exactly equal to
the number of right-hand-side included endogenous
variables, then there are no over-identifying restrictions
and thetest hasno power. However, when the number of
proper instruments exceeds the minimum for just
Identification, this test amounts to a test that all the
exclusionsof theinstrumentsfrom thestructural equation
arevalid.



/7. TIME-SERIES APPLICATIONS OF
SIMULTANEOUS EQUATIONSMODELS

The example of the market for economists that
Introduced this chapter was a time- series model that
Involved lagged dependent variables. In the example, we
assumed away serial correlation, but in general serial
correlation will beasissueto bedealt with in applications
of smultaneousequationsmodelstotimeseries. Thesetup
(6) for a linear simultaneous equations model can be
expanded to make dependence on lagged dependent
variables explicit:

(16) y.'B + yt-llA +z'I'=¢/ .

Recall that the variables y,; and z in this modd are
predetermined if they are uncorrelated with the
disturbance g, and strongly predetermined if € is
statistically independent of y,; and z. In this model, the
strictly exogenous variables z, may include lags (and, if it
makes economic sense, leads). It isnot restrictivetowrite
the model as a first-order lag in y,, as higher-order lags
can be incorporated by including lagged values of the
dependent variables as additional components of y,, with
Identities added to the system of eguations to link the
variablesat different lags. (Thiswasdonein Chapter 5in
discussing the stability of vector autoregressions.)



Thereduced form for the system (16), also called the
final form in time series applications, is

(17) Yy = yt-1,® +z'I1+v/,

where® =- AB*, II =-1I'B%, and v,/ = ¢,/B?, so that the
covariance matrix of v, isQ = B’*2B™. Identification of
the model requiresthat B be nonsingular, and that there
be exclusion and/or covariance restrictions that satisfy a
rank condition. Stability of the model requires that the
characteristic roots of ® all be less than one in modulus.
If one started with a stable structural model that had
disturbances that were serially correlated with an
autoregressive structure, then with suitable partial
differencingthemodel could berewritten intheform (17),
the disturbances v, would be innovations that are
Independent acr osst, and theexplanatory variablesin (17)
would be strongly predetermined. Further, the dynamics
of the system would be dominated by the largest modulus
characteristicroot of ®. In thisstable case, estimation of
the model can proceed in the manner already discussed:
Estimate the reduced form, use fitted values of y, (along
with z, and y, ;) asinstrumentsto obtain 2SL S estimates of
each equation in (17), and finally use fitted covariances
from these equations (calculated at the 2SL S estimates) to
carry out 3SLS.



If thefinal form (17) isnot stable, and in particular A
has one or mor e unit roots, then the statistical properties
of 2S5L S or 3SLS estimates are quite different. some
estimates may conver gein asymptotic distribution at rate
T rather than the customary TY?, and the asymptotic
distribution may not be normal. Consequently, one must
be careful in conducting statistical inference using these
estimates. Thereisan extensive literature on analysis of
systems containing unit roots;, see the chapter by Jim
Stock in theHandbook of EconometricslV. When asystem
Isknown to contain a unit root, then it may be possibleto
transform to a stable system by appropriate differencing.



8. NONLINEAR SIMULTANEOUS EQUATIONS
MODELS

In principle, dependent variables may be
simultaneously determined within a system of eguations
that isnonlinear in variablesand parameters. One might,
for example, consider a system

(18) Fi(yltithi"'int;Zitie) = 8it! | = 11"'1N

for the determination of (yy,Ya,...,.Yn) that depends on a
Kx1 vector of parameters 0, vectors of exogenous
variables z,, and disturbances g,. Such systems might
arise naturally out of economic theory. For example,
consumer or firm optimization may be characterized by
first-order conditions that are functions of dependent
decision variables and exogenous variablesdescribing the
economic environment of choice, withtheeg,, appearingdue
to errorsin optimization by the economic agents, arising
perhaps because ex post realizations differ from ex ante
expectations, or due to approximation errors by the
analyst. For many plausible economic models, linearity of
the system (18) in variables and parameterswould bethe
exception rather than the rule, with the common linear
gpecification justifiable only as an approximation.



The nonlinear system (18) is well-determined if it has a
unique solution for the dependent variables, for every
possible configuration of thez'sand €'s, and for all ©'sin
a specified domain. If it iswell-determined, then it hasa
reduced form

(19) Vi =fi(ZiZots oo Zner €16 €00 o€ 0), | = 1,0,
Thisreduced form can also bewritten
(20) Vie = Ni(ZiZoty e Zni,0) + Ui, i = 1,..N
where
Ni(Z1,Zots o126 0) = E{Fi(Z11,Zt1 -1 Zntr €10, €210+ €t 0) | 22}

and u, isthe disturbance with conditional mean zer o that
makes (20) hold. (20) isa system of nonlinear equations,
and the treatment in Chap. 5 can also be applied to
estimate the structural parameters from this reduced
form. (The specification (20) guaranteesthat the reduced
form disturbances have conditional expectation zero; but
the additional assumption that u's are dtatistically
Independent of z's, or even that they are homoskedastic, is
rarely justifiable from economic theory. Then statistical
analysis based on this assumption may be invalid and
misleading for many application.)



Recall that in Chapter 4, estimation of a nonlinear
equation with contaminated explanatory variables was
discussed, abest nonlinear 2SL S (BN2SL S) estimator was
defined, and practical approximations to the BN2SL S
were discussed. The equationsin (18) would correspond
directly to thisstructureif in equation i, one had

(21) Fi(ylt!th!' .- 1yNt; Zitie)
- yit - h(ylt!"'1yi-1,t!yi+1,t!"'1yNtizit16)1

Absent this normalization, some other normalization is
needed for identification in F;, either on the scale of the
dependenceof F, on onevariable, or inthescaleof g;,. This
Isno different in spirit than the nor malizations needed in
a linear smultaneous equations specification. Given an
Identifying normalization, it is possible to proceed in
essentially the same way as in Chapter 4. Make a
first-order Taylor's expansion of (18) about an initial
parameter vector O, to obtain

(22) Fi(ylt!th!' - 1yNt; Zitieo)
K OF (.Y 0eeesVariZ.s0
~ . E i(ylty2t Y NeZ it o) ,(Gk_e
k=1 aek
Treat the expressions X, = -OF:(Y1,Yos--Ynt, Zit,0,)/00, as

contaminated explanatory variables, and the expectations
of X, given z,...,Zy; astheideal best instruments.

ok) T Eit.



Approximate these best instruments by regressing the X,
on suitable functions of the z's, asin Chapter 4, and then
estimate (22) by thisapproximationtobest 2SL S. Starting
from an initial guess for the parameters, iterate this
Process to convergence, using the estimated coefficients
from (22) to update the parameter estimates. The
left-hand-side of (22) is the dependent variable in these
2SLS regressions, with the imposed normalization
guaranteeingthat thesystemisidentified. Thisprocedure
can be carried out for the entire system (22) at one time,
rather than equation by equation. This will provide
nonlinear 2SLS estimates of all the parameters of the
system. Thesewill not in general be best system estimates
because they do not take into account the covariances of
the €'s across equations. Then, a final step is to apply
3SLSto (22), using the previous 2SL S estimates to obtain
the feasible GLS transformation. The procedure just
described is what the LSQ command in TSP does when
applied to a system of nonlinear equations without
normalization, with instrumental variables specified.



When the nonlinear reduced form (20) can be obtained as
an analytic or computable model, it is possible to apply
nonlinear least squares methods directly, either equation
by equation as N2SL S or for the system asN3SLS. This
estimation procedure is described in Chapter 5. One
caution is that while the disturbances u; in (20) have
conditional mean zero by construction, economic theory
will rarely imply that they are, in addition, homoskedastic,
and the large sample statistical theory needs to be
reworked when heteroskedasticity of unknown form is
present. Just asin linear models, consistency is generally
not at issue, but standard errors will typically not be
estimated consistently. At minimum, one should be
cautiousand userobust standard error estimatesthat are
consistent under heter oskedasticity of unknown form.



