
Example 1. Market for Ph.D. economists.

q = log number employed, 
w = log wage rate, 
s = log college enrollment 
m = log median wage of lawyers.

 demand in year t

(1)              qt = ��11 + ��12st + ��13wt + JJ1t ;

supply in year t

(2)              qt = ��21 + ��22mt + ��23wt + ��24qt-1 + JJ2t ;

structural simultaneous equations system.  
college enrollments st and lawyer salaries mt are
exogenous.  (1) and (2) are a complete system for the
determination in market equilibrium of the two
endogenous or dependent variables qt and wt. 
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Figure 1 shows the demand and supply curves
corresponding to (1) and (2), with w and q determined by
market equilibrium.  Two years are shown, with solid
curves in the first year and dashed curves in the second. 
The equilibrium wage and quantity are determined by the
condition that the market clear.  



Suppose you are interested in the demand equation, and
have data on the variables appearing in (1) and (2).  How
could you obtain good statistical estimates of the demand
equation parameters?  

Think of the “experiment” run by Nature, versus the
experiment that you would ideally like to carry out to
form the estimates.

If both the demand and supply curves shift between
periods due to random disturbances, then the locus of
equilibria will be a scatter of points (in this case, two)
which will not in general lie along either the demand curve
or the supply curve.  In the case illustrated, the dotted line
which passes through the two observed equilibria has a
slope substantially different than the demand curve.  If the
disturbances mostly shift the demand curve and leave the
supply curve unchanged, then the equilibria will tend to
map out the supply curve.  Only if the disturbances mostly
shift the supply curve and leave the demand curve
unchanged will the equilibria tend to map out the demand
curve. 

 



Consequences.  
An OLS fit of equation (1) will produce a line like the
dotted line in the figure that is a poor estimate of the
demand curve.  Only when most of the shifts over time are
coming in the supply curve so that the equilibria lie along
the demand curve will least squares give satisfactory
results.  
Exogenous variables shift the demand and supply curve in
ways that can be estimated.  In particular, the variable m
that appears in the supply curve but not the demand curve
shifts the supply curve, so that the locus of w,q pairs swept
out when only m changes lies along the demand curve.
The ideal experiment you would like to run in order to
estimate the slope of the demand curve is to vary m,
holding all other things constant.  Put another way, you
need to find a statistical analysis that mimics the ideal
experiment by isolating the partial impact of the variable
m on both q and w. 



The structural system (1) and (2) can be solved for qt and
wt as functions of the remaining variables

(3)        wt =  

(4)         qt = 

Equations (3) and (4) are called the reduced form.  For this
solution to exist, we need ��23 - ��13 non-zero.  This will
certainly be the case when the elasticity of supply ��23 is
positive and the elasticity of demand ��13 is negative.
Hereafter, assume that the true ��23 - ��13 > 0.  

Equations (3) and (4) constitute a system of regression
equations, which could be rewritten in the stacked form



(5)       , 

or 
y = Z%% + �� ,

where the %%'s are the combinations of behavioral
coefficients, and the ��'s are the combinations of
disturbances, that appear in (3) and (4).  The system (5) can
be estimated by GLS.  In general, the disturbances in (5) are
correlated and heteroskedastic across the two equations.
However, exactly the same explanatory variables appear in
each of the two equations.  If the disturbances are
uncorrelated across time, so that E��it��js = ))ij

ts, or E����11 =
ITTT((, then GLS using this covariance structure collapses to
OLS, the seemingly unrelated regression case.



Suppose you are interested in estimating the parameters of
the behavioral demand equation (1).  For OLS applied to (1)
to be consistent, it is necessary that the disturbance JJ1t be
uncorrelated with the right-hand-side variables, which are
st and wt.  This condition is met for st, provided it is indeed
exogenous.  However, from (3), an increase in JJ1t increases
wt, other things being equal, and in (1) this results in a
positive correlation of the RHS variable wt and the
disturbance JJ1t.  

Instrumental variables estimation is one alternative for
the estimation of (1).  In this case, one needs to introduce at
least as many instrumental variables as there are RHS
variables in (1), and these variables need to be uncorrelated
with JJ1t and fully correlated with the RHS variables.  The list
of instruments should include the exogenous variables in (1),
which are the constant, 1, and st.  Other candidate
instruments are the exogenous and predetermined variables
elsewhere in the system, mt and qt-1.



Will IV work?  In general, to have enough instruments, there
must be at least as many predetermined variables excluded
from (1) and appearing elsewhere in the system as there are
endogenous variables on the RHS of (1).  When this is true,
(1) is said to satisfy the order condition for identification.  In
the example, there is one RHS endogenous variable, wt, and
two excluded exogenous and predetermined variables, mt

and qt-1, so the order condition is satisfied.  If there are
enough instruments, then from the general theory of IV
estimation, the most efficient IV estimator is obtained by
first projecting the RHS variables on the space spanned by
the instruments, and then using these projections as
instruments.  In other words, the best combinations of
instruments are obtained by regressing each RHS variable
in (1) on the instruments 1, st, mt, and qt-1, and then using the
fitted values from these regressions as instruments.  But the
reduced form equation (3) is exactly this regression.
Therefore, the best IV estimator is obtained by first
estimating the reduced form equations (3) and (4) by OLS
and retrieving fitted values, and then estimating (1) by OLS
after replacing RHS endogenous variables by their fitted
values from the reduced form.  For this to yield instruments
that are fully correlated with the RHS variables, it must be
true that at least one of the variables mt and qt-1 truly enters
the reduced form, which will happen if at least one of the
coefficients ��22 or ��24 is nonzero.  This is called the rank
condition for identification.



2. STRUCTURAL AND REDUCED FORMS

In general a behavioral or structural simultaneous
equations system can be written

(6)                                 yt11B + zt11

 = JJt11,

where yt11 = (y1t, .,yNt) is a 1×N vector of the endogenous
variables, B is a N×N array of coefficients, zt11 = (zn1, .,zMt) is
a 1×M vector of predetermined variables, 

 is a M×N array
of coefficients, and JJt11 is a 1×N vector of disturbances.  Let
(( denote the N×N covariance matrix of JJt.  The reduced
form for this system is

(7)                                         yt11 = zt11$$ + ��t11,

where $$ = - 

B-1 and ��t11 = JJt11B
-1, so that the covariance

matrix of ��t is 66 = B11-1((B-1.   Obviously, for (6) to be a
well-defined system that determines yt, it is necessary that B
be non-singular.



3. IDENTIFICATION

Some restrictions must be imposed on the coefficient
arrays B and 

, and possibly on the covariance matrix ((, if
the remaining coefficients are to be estimated consistently.
First, post-multiplying (6) by a nonsingular diagonal matrix
leaves the reduced form solution (7) unchanged, so that all
versions of (6) that are rescaled in this way are
observationally equivalent.   Then, for estimation of (6) it is
necessary to have a scaling normalization for each equation.
B, 

, and (( contain N(N-1) + NM + N(N+1)/2  parameters,
excluding the N parameters set by the scaling normalizations
and taking into account the symmetry of ((.  However, $$ and
66 contain only NM + N(N+1)/2 parameters.  Therefore, an
additional N(N-1) restrictions on parameters are necessary
to determine the remaining structural parameters from the
reduced form parameters.  

It is traditional to define order and rank conditions for
identification.  These come from the structure of the B and


 matrices and the conditions $$B + 

 = 0 and B1166B = **
relating the reduced form coefficients to the structural
parameters.  But it is simpler to think of identification in
terms of the possibility for IV estimation:  An equation (with
associated restrictions) is identified if and only if there exists
a consistent IV estimator for the parameters in the equation;
i.e., if there are sufficient instruments for the RHS endogenous
variables that are fully correlated with these variables.  



Even covariance matrix restrictions can be used in
constructing instruments.  For example, if you know that the
disturbance in an equation you are trying to estimate is
uncorrelated with the disturbance in another equation, then
you can use a consistently estimated residual from the second
equation as an instrument.  If you are not embarrassed to let
a computer do your thinking, you can even leave
identification to be checked numerically: an equation is
identified if and only if you can find an IV estimator for the
equation that empirically has finite variances.  

Exercise 1.  Show that the condition above requiring
N(N-1) restrictions on parameters will hold if the order
condition, introduced in the example of the market for
economists, holds for each equation.  In the general case, the
order condition for an equation states that the number of
excluded predetermined (including strictly exogenous)
variables is at least as great as the number of included RHS
endogenous variables.  Add the number of excluded RHS
endogenous variables to each side of this inequality, and sum
over equations to get the result.



4. 2SLS

For discussions of estimators for simultaneous equations
systems, it is convenient to have available the systems (6) and
(7) stacked two different ways.   First, one can stack (6) and
(7) vertically by observation to get

(8)                                             YB + Z

 = JJ
and
(9)                                             Y = Z$$ + ��,

where Y, JJ, and �� are T×N and Z is T×K.  With this
stacking, one has EJJ11JJ/T = (( and E��11��/T = B-1((B11-1.  Note
that post-multiplying (8) by a non-singular diagonal matrix
leaves the reduced form unchanged; hence this modification
is observationally equivalent.  Then, we can choose any
convenient diagonal matrix as a normalization.  In
particular, we can renumber the equations and rescale them
so that the dependent variable ynt appears with a coefficient
of one in the n-th equation.  This is equivalent to saying that
we can write B = I - A, where A is a matrix with zeros down
the diagonal, and that the behavioral system (8) can be
written

(10)                  Y = YA - Z

 + JJ �� [Y | Z]  �� XC + JJ.

In this setup, Y and JJ are T×N, X is T×(N+K), and C is
(N+K)×N.  



Restrictions that exclude some variables from some
equations will force some of the parameters in C to be zero.
Rewrite the n-th equation from (10), taking these restrictions
into account, as

(11)                    yn = YnAn - Zn

n + JJn �� XnCn + JJn,

where this equation includes Mn endogenous variables and
Kn predetermined variables on the RHS.  Then, yn is T×1, Yn

is T×Mn, and Zn is T×Kn, and Xn is T×(Mn+Kn).



A second method of stacking which is more convenient for
empirical work is to write down all the observations for the
first equation, followed by all the observations for the second
equation, etc.  This amounts to starting from (11), and
stacking the T observations for the first equation, followed
by the T observations for the second equation, etc.  Since the
Cn differ across equations, the stacked system looks like

(12)               �� Xc + e.

Note that X in (12) is not the same as X in (10); X is NT×J,
where J = J1 + .  + JN and Jn = Mn + Kn is the number of RHS
variables in the n-th equation.  The system (12) has the
appearance of a system of regression equations.  Because of
RHS endogenous variables, OLS will not be consistent, so
that we have to turn to IV methods.  In addition, there are
GLS issues due to the correlation of disturbances across
equations.



Suppose you are interested in estimating a single
equation from the system, say 

y1 =  Y1A1 - Z1

1 + JJ1 �� X1c1 + JJ1.  

The IV method states that if you can find instruments W
that are uncorrelated with JJ1 and fully correlated with X1,
then the best IV estimator,
 

ii1 = [X111W(W11W)-1W11X1]
-1X111W(W11W)-1W11y1 

is consistent.  But the potential instruments for this problem
are Z = [Z1 | Z-1], where Z-1 denotes the predetermined
variables that are in Z, but not in Z1.  The order condition for
identification of this equation is that the number of variables
in Z-1 be at least as large as the number of variables in Y1, or
the number of excluded predetermined must be as large as the
number of included RHS endogenous.  The rank condition is
that X111 W be of maximum rank.  For consistency, you need
to have X111W/T converging in probability to a matrix of
maximum rank.

Exercise 2.  Show that the rank condition implies the
order condition.  Show in the supply and demand for
economists that the order condition can be satisfied, but the
rank condition can fail, so that the order condition is
necessary but not sufficient for the rank condition.



The best IV estimator can be written ii1 = [X1e11X1e]
-1X1e11y1,

where X1e = W(W11W)-1W11X1  is the array of fitted values
from an OLS regression of X1 on the instruments W = Z; i.e.,
the reduced form regression.  Then, the estimator has a
two-stage OLS (2SLS) interpretation:

(1) Estimate the reduced form by OLS, and retrieve the
fitted values of the endogenous variables.

(2) Replace endogenous variables in a behavioral
equation by their fitted values from the reduced form,
and apply OLS.

Recall from the general IV method that the procedure
above done by conventional OLS programs will not
produce consistent standard errors.  Correct standard
errors can be obtained by first calculating residuals from
the 2SLS estimators in the original behavioral model, u1 =
y1 - X1ii2SLS, estimating ))̂2 = u111u1/(T-K1), and then
estimating Ve(ii2SLS) = ))̂2[X111X1]

-1.



5. 3SLS

The 2SLS method does not exploit the correlation of
the disturbances across equations.  You saw in the case of
systems of regression equations that using FGLS to
account for such correlations improved efficiency.  This
will also be true here.  To motivate an estimator, write out
all the moment conditions available for estimation of each
equation of the system:

(13)     

or
(INTTZ11)y�� [(INTTZ11)X]c + (INTTZ11)JJ.

The disturbances in the NK×1 system (13) have the
covariance matrix ((TT(Z11Z).  Then, by analogy to GLS, the
best estimator for the parameters should be

ii3SLS = X11(INTTZ)(((-1TT(Z11Z)-1)(INTTZ11)y

        = X11(((-1TT(Z(Z11Z)-1)Z11))y .



This estimator can be obtained in three OLS stages, hence
its name:

(1-2) Do 2SLS on each equation of the system, and
retrieve the residuals calculated at the 2SLS estimators
and the original (not the fitted) RHS variables.
(3) Estimate (( from the residuals just calculated, and
then do FGLS regression of y on X using the GLS
weighting matrix ((-1TT(Z(Z11Z)-1)Z11).

The large-sample approximation to the covariance
matrix for ii3SLS is, from the usual GLS theory,
 

(15)     V(ii3SLS) = .

The FGLS third stage for the 3SLS estimator can be done
conveniently by a OLS on transformed data.  Let L be a
lower triangular Cholesky factor of ((e

-1 and Q be a lower
triangular Cholesky factor of (Z(Z11Z)-1)Z11.  Then
(LTTQ)(LTTQ)11 = ((e

-1TT(Z(Z11Z)-1)Z11).   Transform (LTTQ)y
= (LTTQ)Xc + �� and apply OLS to this system to get the
3SLS estimators.

The main advantage of 3SLS over 2SLS is a gain in
asymptotic efficiency.  The main disadvantage is that the
estimators for a single equation are potentially less robust,
since they will be inconsistent if the IV assumptions that Z
is predetermined fail in any equation, not just a particular
one of interest.



6. TESTING FOR OVER-IDENTIFYING RESTRICTIONS

Consider an equation y = X�� + u from a system of
simultaneous equations, and let W denote the array of
instruments (exogenous and predetermined variables) in
the system.  Let X* = PWX denote the fitted values of X
obtained from OLS estimation of the reduced form; where
PW = W(W’W)**W’ is the projection operator onto the
space spanned by W.  The equation is over-identified if the
number of instruments W exceeds the number of
right-hand-side variables X.  From Chapter 3, the GMM
test statistic for over-identification is the minimum in �� of

2nQn(��) = u11PW u/))2 = u11PX* u/))2 + u11(PW - PX*)u/))2,

where u = y - X��.  One has u11(PW - PX*)u = y11(PW - PX*)y,
and at the minimum in ��, u11PX*u = 0, so that 

2nQn = y11(PW - PX*)y/))2.  

Under Ho, this statistic is asymptotically chi-squared
distributed with degrees of freedom equal to the difference
in ranks of W and X*.  This statistic is the difference in the
sum of squared residuals from the 2SLS regression of y on
X and the sum of squared residuals from the reduced form
regression of y on W, normalized by ))2.  



A computationally convenient equivalent form is 

2nQn = ��ÏÏW - ÏÏX*��
2/))2, 

the sum of squares of the difference between the reduced
form fitted values and the 2SLS fitted values of y,
normalized by ))2.  Finally, 2nQn = y11QX*PWQX*y/))2 =
nR2/))2, where R2 is the multiple correlation coefficient
from regressing the 2SLS residuals on all the instruments;
this result follows from the equivalent formulas for the
projection onto the subspace of W orthogonal to the
subspace spanned by X*.  This test statistic does not have
a version that can be written as a quadratic form with the
wings containing a difference of coefficient estimates from
the 2SLS and reduced form regressions.  Note that if the
equation is just identified, with the number of proper
instruments excluded from the equation exactly equal to
the number of right-hand-side included endogenous
variables, then there are no over-identifying restrictions
and the test has no power.  However, when the number of
proper instruments exceeds the minimum for just
identification, this test amounts to a test that all the
exclusions of the instruments from the structural equation
are valid. 



7 .  T I M E - S E R I E S  A P P L I C A T I O N S  O F
SIMULTANEOUS EQUATIONS MODELS

The example of the market for economists that
introduced this chapter was a time- series model that
involved lagged dependent variables.  In the example, we
assumed away serial correlation, but in general serial
correlation will be as issue to be dealt with in applications
of simultaneous equations models to time series.  The setup
(6) for a linear simultaneous equations model can be
expanded to make dependence on lagged dependent
variables explicit:

(16)     yt11B + yt-111��  + zt11

 = JJt11.

Recall that the variables yt-1 and zt in this model are
predetermined if they are  uncorrelated with the
disturbance JJt, and strongly predetermined if JJt is
statistically independent of yt-1 and zt.  In this model, the
strictly exogenous variables zt may include lags (and, if it
makes economic sense, leads).  It is not restrictive to write
the model as a first-order lag in yt, as higher-order lags
can be incorporated by including lagged values of the
dependent variables as additional components of yt, with
identities added to the system of equations to link the
variables at different lags.  (This was done in Chapter 5 in
discussing the stability of vector autoregressions.)



The reduced form for the system (16), also called the
final form in time series applications, is

(17)               yt11 = yt-111�� + zt11$$ + ��t11,

where �� = - ��B-1, $$ = - 

B-1, and ��t11 = JJt11B
-1, so that the

covariance matrix of ��t is 66 = B11-1((B-1.  Identification of
the model requires that B be nonsingular, and that there
be exclusion and/or covariance restrictions that satisfy a
rank condition.  Stability of the model requires that the
characteristic roots of �� all be less than one in modulus.
If one started with a stable structural model that had
disturbances that were serially correlated with an
autoregressive structure, then with suitable  partial
differencing the model could be rewritten in the form (17),
the disturbances ��t would be innovations that are
independent across t, and the explanatory variables in (17)
would be strongly predetermined.  Further, the dynamics
of the system would be dominated by the largest modulus
characteristic root of ��.  In this stable case, estimation of
the model can proceed in the manner already discussed:
Estimate the reduced form, use fitted values of yt (along
with zt and yt-1) as instruments to obtain 2SLS estimates of
each equation in (17), and finally use fitted covariances
from these equations (calculated at the 2SLS estimates) to
carry out 3SLS.



If the final form (17) is not stable, and in particular ��
has one or more unit roots, then the statistical properties
of 2SLS or 3SLS estimates are quite different:  some
estimates may converge in asymptotic distribution at rate
T rather than the customary T1/2, and the asymptotic
distribution may not be normal.  Consequently, one  must
be careful in conducting statistical inference using these
estimates.  There is an extensive literature on analysis of
systems containing unit roots; see the chapter by Jim
Stock in the Handbook of Econometrics IV.  When a system
is known to contain a  unit root, then it may be possible to
transform to a stable system by appropriate differencing.



8. NONLINEAR SIMULTANEOUS EQUATIONS
MODELS  

In principle, dependent variables may be
simultaneously determined within a system of  equations
that is nonlinear in variables and parameters.  One might,
for example, consider a system

(18)     Fi(y1t,y2t,...,yNt;zit,��) = JJit, i = 1,...,N

for the determination of (y1t,y2t,...,yNt) that depends on a
K×1 vector of parameters ��, vectors of exogenous
variables zit, and disturbances JJit.  Such systems might
arise naturally out of economic theory.  For example,
consumer or firm optimization may be characterized by
first-order conditions that are functions of dependent
decision variables and exogenous variables describing the
economic environment of choice, with the JJit appearing due
to errors in optimization by the economic agents,  arising
perhaps because ex post realizations differ from ex ante
expectations, or due to approximation errors by the
analyst.  For many plausible economic models, linearity of
the system (18) in variables and parameters would be the
exception rather than the rule, with the common linear
specification justifiable only as an approximation.  



The nonlinear system (18) is well-determined if it has a
unique solution for the dependent variables, for every
possible configuration of the z's and  JJ's, and for all ��'s in
a specified domain.  If it is well-determined, then it has a
reduced form

(19)    yit = fi(z1t,z2t,...,zNt,JJ1t,JJ2t,...,JJNt,��), i = 1,...,N.

This reduced form can also be written

(20)     yit = hi(z1t,z2t,...,zNt,��) + uit, i = 1,...,N

where 

 hi(z1t,z2t,...,zNt,��) = E{fi(z1t,z2t,...,zNt,JJ1t,JJ2t,...,JJNt,��)

zt},

and uit is the disturbance with conditional mean zero that
makes (20) hold.  (20) is a system of nonlinear equations,
and the treatment in Chap. 5 can also be applied to
estimate the structural parameters from this reduced
form.  (The specification (20) guarantees that the reduced
form disturbances have conditional expectation zero; but
the additional assumption that u's are statistically
independent of z's, or even that they are homoskedastic, is
rarely justifiable from economic theory.  Then statistical
analysis based on this assumption may be invalid and
misleading for many application.)



Recall that in Chapter 4, estimation of a nonlinear
equation with contaminated explanatory variables was
discussed, a best nonlinear 2SLS (BN2SLS) estimator was
defined, and practical approximations to the BN2SLS
were discussed.  The equations in (18) would correspond
directly to this structure if in equation i, one had

(21)     Fi(y1t,y2t,...,yNt;zit,��) 
= yit - h(y1t,...,yi-1,t,yi+1,t,...,yNt,zit,��),

Absent this normalization, some other normalization is
needed for identification in Fi, either on the scale of the
dependence of Fi on one variable, or in the scale of JJit. This
is no different in spirit than the normalizations needed in
a linear simultaneous equations specification.  Given an
identifying normalization, it is possible to proceed in
essentially the same way as in Chapter 4.  Make a
first-order Taylor's expansion of (18) about an initial
parameter vector ��o to obtain
(22) Fi(y1t,y2t,...,yNt;zit,��o) 

�� - ��(��k-��ok) + JJit.

Treat the expressions xitk = -00Fi(y1t,y2t,...,yNt;zit,��o)/00��k as
contaminated explanatory variables, and the expectations
of xikt given z1t,...,zNt as the ideal best instruments.  



Approximate these best instruments by regressing the xitk

on suitable functions of the z's, as in Chapter 4, and then
estimate (22) by this approximation to best 2SLS.  Starting
from an initial guess for the parameters, iterate this
process to convergence, using the estimated coefficients
from (22) to update the parameter estimates.  The
left-hand-side of (22) is the dependent variable in these
2SLS regressions, with the imposed normalization
guaranteeing that the system is identified.  This procedure
can be carried out for the entire system (22) at one time,
rather than equation by equation.  This will provide
nonlinear 2SLS estimates of all the parameters of the
system.  These will not in general be best system estimates
because they do not take into account the covariances of
the JJ's across equations.  Then, a final step is to apply
3SLS to (22), using the previous 2SLS estimates to obtain
the feasible GLS transformation.  The procedure just
described is what the LSQ command in TSP does when
applied to a system of nonlinear equations without
normalization, with instrumental variables specified.



When the nonlinear reduced form (20) can be obtained as
an analytic or computable model, it is possible to apply
nonlinear least squares methods directly, either equation
by equation as N2SLS or for the system as N3SLS.  This
estimation procedure is described in Chapter 5.  One
caution is that while the disturbances uit in (20) have
conditional mean zero by construction, economic theory
will rarely imply that they are, in addition, homoskedastic,
and the large sample statistical theory needs to be
reworked when heteroskedasticity of unknown form is
present.  Just as in linear models, consistency is generally
not at issue, but standard errors will typically not be
estimated consistently.  At minimum, one should be
cautious and use robust standard error estimates that are
consistent under heteroskedasticity of unknown form.


