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ABSTRACT. A new class of autocorrelation robust test statistics is intro-
duced. The class of tests generalizes the Kiefer, Vogelsang, and Bunzel (2000)
test in a manner analogous to Anderson and Darling’s (1952) generalization of
the Cramér-von Mises goodness of fit test. In a Gaussian location model, the
error in rejection probability of the new tests is found to be O (Tﬁl) , Where
T denotes the sample size. Appropriately selected tests dominate the Kiefer,
Vogelsang, and Bunzel (2000) test in terms of local asymptotic power.

1. INTRODUCTION

In many applications in time series econometrics, estimators that enjoy optimality
properties in cross-sectional environments remain asymptotically normally distrib-
uted, albeit with a covariance matrix that depends on the autocovariance function of
the data. A leading example is the OLS estimator in a linear regression model with
exogenous regressors and an autocorrelated error term. The conventional approach
in the literature is to base autocorrelation robust inference on Wald-type test statis-
tics constructed by employing a standardization involving a consistent estimator of
the asymptotic covariance matrix of an estimator of the parameter of interest (e.g.
Robinson and Velasco (1997) and Wooldridge (1994)). While this approach often de-
livers inference procedures with certain asymptotic optimality properties, the finite
sample size properties of these procedures has been found to be somewhat less than
satisfactory in many cases (e.g. den Haan and Levin (1997)).

Kiefer, Vogelsang, and Bunzel (2000, hereafter denoted KVB) demonstrate that
the size properties of Wald-type test statistics can be ameliorated if an inconsistent
covariance matrix “estimator” is used and the critical values are adjusted to accom-
modate the randomness of the matrix employed in the standardization. Any size
improvements (relative to conventional test statistics) achieved by employing incon-
sistent variance estimators necessarily come at the expense of local asymptotic power
and there is a noticeable difference between the local asymptotic power properties of
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the KVB testing procedure and those of conventional procedures. As a consequence,
it seems natural to ask whether it is possible to construct an autocorrelation robust
inference procedure that matches the KVB procedure in terms of size properties and
dominates it in terms of local asymptotic power.

The present paper makes three contributions. First, a new class of autocorrelation
robust inference procedures is introduced. In a manner analogous to Anderson and
Darling’s (1952) generalization of the Cramér-von Mises goodness of fit test, the class
of autocorrelation robust tests introduced here generalizes the KVB test by accom-
modating a weight function in the definition of the covariance matrix “estimator”
used in the construction of the test statistic.

Second, the paper sheds new light on the size properties of the KVB test and its
generalizations introduced herein. In a Gaussian location model, the error in rejection
probability (ERP) of the new tests is found to be O (T~!) (where T' denotes the sam-
ple size) when the critical value suggested by the first-order asymptotic distribution of
the test statistic is used. This result is very encouraging, as the ERP of conventional
procedures is no better than O (T -l 2) under similar circumstances (Velasco and
Robinson (2001)). Indeed, in spite of the restrictive nature of the assumptions under
which this higher-order asymptotic result is obtained, the rate O (T~!) is remarkable
in view of the fact that existing results on the performance of bootstrap-based au-
tocorrelation robust inference procedures indicate that even these procedures fail to
achieve the same rate of convergence in the presence of nonparametric autocorrelation
(Hérdle, Horowitz, and Kreiss (2001)).

Finally, the paper characterizes the local asymptotic power properties of the new
tests in a linear regression model under fairly general assumptions. It is shown that
while all members of the new class of tests are inferior to conventional tests in terms
of local asymptotic power, the shortcoming of the new tests can be made arbitrarily
small by employing appropriately chosen weight functions. Although the finite-sample
implications of this near-optimality result are unclear, the insights provided by the
derivation of the result suggest how nontrivial power improvements over the KVB
test can be achieved in sample sizes of empirical relevance. In other words, the
constructive nature of the proof of the near-optimality result makes it possible to
provide an affirmative answer to the power-related question posed at the end of the
second paragraph.

In sum, this paper constructs an autocorrelation robust inference procedure that
matches the KVB procedure in terms of higher-order size properties and dominates
it in terms of local asymptotic power properties. The finite sample relevance of these
asymptotic results is assessed by means of a small Monte Carlo experiment in which
the test proposed in this paper is found to perform very well.

Section 2 introduces the basic model, states the assumptions under which formal
results will be developed and introduces the new class of inference procedures. Sec-
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tion 3 studies higher-order size properties in a Gaussian location model, while local
asymptotic power results are presented in Section 4. Section 5 investigates finite sam-
ple properties by means of a Monte Carlo experiment. Finally, Appendix A is devoted
to the development of the asymptotic properties of the “estimators” employed in the
testing procedure and proofs are collected in Appendix B.

2. PRELIMINARIES
The basic framework is that of KVB. Consider the linear regression model

Y = x,0 + uy, t=1,...,T, (1)

where x; is a k-vector of regressors, [ is a k-vector of parameters and u; is an un-
observed error term with F (u¢|x;) = 0. The processes u; and x; may be serially
correlated and heteroskedastic, but are assumed to satisfy the following high-level
assumption.

AL () T2 guy —4 QY2W,, (), where Q is positive definite, Wy, () is a k-
dimensional Wiener process and |-| denotes the integer part of the argument.

(ii) supg<,<; |71 Zg? Ty — T’Q) —, 0, where () is positive definite.

Assumption Al is due to KVB and is discussed there. Suffice it to say that
this assumption is satisfied under a wide range of primitive moment and memory
conditions on u; and x;. An important implication of Al is that the OLS estimator

. -1
8= (Z;‘le xtxg) <ZtT:1 :Utyt) is root-T' consistent and asymptotically normal:

VT (B=8) =N (0.Q70Q7").

Suppose the objective is to test hypotheses on (3, treating the serial correlation
properties of u; as a nonparametric nuisance feature. Specifically, suppose the hy-
pothesis to be tested Hy : R3 = r, where R is a ¢ X k matrix (of rank ¢) and r is a
g-vector.

The standard approach is to base inference on a test statistic of the form

Fgac =T (RB - 7“)/ (RQ_IQHACQ_IRI)1 (R@ — 7”) ;

where Q = T~ .7, 2,2} is a consistent estimator of Q (Assumption Al (ii)), while
Quac is a consistent estimator of €2, the long-run covariance matrix of z;u;. Although

consistent estimators of ) are available under conditions resembling A1 (e.g. Andrews
(1991), Andrews and Monahan (1992), Hansen (1992), de Jong and Davidson (2000),



AUTOCORRELATION ROBUST INFERENCE 4

Newey and West (1987, 1994) and Robinson (1991)), the size properties of tests
based on Fyac can be quite unsatisfactory in finite samples (e.g. den Haan and
Levin (1997)).

To the extent that the poor size properties of Figac are likely to be due to the fact
that distributional approximations based on conventional asymptotic theory fail to
capture the finite-sample variability in O AC, it seems plausible that tests with better
size properties can be obtained by employing an “estimator” of {2 whose limiting
distribution is non-degenerate. Corroboration of this conjecture has been provided
by KVB, which proposes the test statistic

Frvp =T (RB - 7“)/ (RéilﬂKVBc?ilR/) - (RB - 7“) )

where
T-1 t
Qryp=T"? Z SeSt, St = st <ys - x;ﬁ) :
t=1 s=1

Unlike QHAC, QKVB is not a consistent estimator of ). Nonetheless, Fxyp is as-
ymptotically pivotal under H, and the associated test has good finite-sample size
properties and respectable (finite-sample and local asymptotic) power properties.
Recently, Kiefer and Vogelsang (2002a) have shown that Qv equals one half times
the kernel estimator of €} computed using the Bartlett kernel with the bandwidth
parameter equal to the sample size, while Kiefer and Vogelsang (2002b) have shown
that the Bartlett kernel dominates other popular kernels in terms of the local as-
ymptotic power of tests based on kernel estimators implemented with the bandwidth
parameter equal to the sample size.
The present paper studies test statistics of the form

Fo=T(Rp—r) (RQ'0.Q'R) " (RB-7),

where

and « (+) is a weight function satisfying the following assumption.

A2. k:(0,1) — [0, 00) is Lipschitz continuous; that is, there exists a finite constant
M, such that |k (r) — k()| < My |r—s|forall0 <r <s <1
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When the weight function « (-) is constant, the statistic F; is equivalent to Fxyp. On
the other hand, nonconstant weight functions give rise to test statistics that are not
covered by the results of Kiefer and Vogelsang (2002b). The statistic F,, generalizes
Fkyp in a manner analogous to Anderson and Darling’s (1952) generalization of the
Cramér-von Mises goodness of fit test. Specifically, the limiting distribution of Qrve
is of the Cramér-von Mises variety, whereas the limiting representation of Q. turns
out to be a multivariate version of the statistic W? appearing in equation (4.5) of
Anderson and Darling (1952).

3. SIZE PROPERTIES IN A GAUSSIAN LOCATION MODEL

In Monte Carlo experiments, KVB and Bunzel, Kiefer, and Vogelsang (2001) have
found the size properties of Fxy 5 to be superior to those of Fac. A heuristic ex-
planation of these findings can be found in Bunzel, Kiefer, and Vogelsang (2001, p.
1093), but to the best of this author’s knowledge no previous paper has attempted
to use higher-order asymptotic theory to provide an analytical explanation of the
encouraging size performance of the KVB procedure. As a first step in that direc-
tion, this section derives the rate of convergence of F); to its (non-normal) limiting
null distribution under the assumption that y; is generated by the Gaussian location
model

yt:ﬁ+ut7 tzl?"'vT7 (2)

where

Al*. w; = (L) n,, where n, ~i.i.d. N'(0,1) and ¢ (L) = > 72, ¥, L" is a lag polyno-
mial with ¢ (1) # 0 and Y .2, i [1);] < oc.

The location model is the simplest possible special case of the general regres-
sion model presented in Section 2, but is nonetheless of some empirical interest (e.g.
Diebold and Mariano (1995), Zambrano and Vogelsang (2000)). Employing a model
similar to the one studied here, Velasco and Robinson (2001) derive Edgeworth ex-
pansions of the distribution of Fgac under the assumption that QO mac belongs to a
certain class of kernel estimators. The leading term in the asymptotic expansion of
the distribution function of Fg4c is no smaller than O (T‘l/ 2) when the bandwidth
expansion rate is such that the order of the asymptotic mean squared error (MSE) of
Qpac is minimized (Velasco and Robinson (2001, Section 4)). In contrast, Theorem
1 shows that even if inference is based on first-order asymptotic theory, the ERP is
O (T~') when the hypothesis Hy : 3 = 3, is tested by means of the test statistic
introduced in this paper, viz.
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T (5 5,) NI
T2 zf_mz/ﬂ g T Z (-5),

where 3 =TS 4, is the sample mean.

Theorem 1. Suppose y; is generated by (2) and suppose assumptions A1* and A2
hold. Then

. 2
T{p-p
sup |Pr 51 ) —<c| —Pr|— z — <S¢ :O(T’l),
ceR T-2%, . k(t/T)S? Jo & (r) B (r)"dr

where B (+) is a Brownian bridge and Z ~ N (0,1) is independent of B () .

The proof of Theorem 1 establishes a moment bound on the remainder term in
a stochastic expansion of the test statistic and then translates the moment bound
into a bound on the ERP by applying the following remarkable implication of Stein’s
lemma.

Lemma 2 [Shorack (2000)]. For any random variables £ and A,

sup|Pr(é +A<c)-Pr(é<e) <4 (1+ \/E [52]) V E[A2].

ceR

Normality plays an important simplifying role in the proof of Theorem 1, greatly
facilitating the construction of a good coupling between the test statistic and its (non-
normal) asymptotic representation. It is plausible that an extension of Theorem 1
to non-Gaussian time series can be based on Gotze and Tikhomirov (2001), but an
investigation along those lines is beyond the scope of this paper.

In view of Theorem 1, the fact that Fxyp dominates Fyac in terms of finite-
sample size properties is consistent with the predictions of higher-order asymptotic
theory. Theorem 1 therefore complements the Monte Carlo results of KVB and Bun-
zel, Kiefer, and Vogelsang (2001) and sheds new light on these. Heuristically, the fast
rate of decay of the ERP of F,, is achieved by employing a standardization factor €2,
whose finite-sample distribution is well approximated by its asymptotic counterpart.
Indeed, the contribution of stochastic difference between €2, and its limiting repre-
sentation to the asymptotic expansion reported in Theorem 1 is of the same order of

magnitude as the contribution due to the stochastic difference between 7"/2 (B — ﬁ)

and its limiting normal distribution, whereas only the discrepancy between Qnac and
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its probability limit is reflected in the leading term in the asymptotic expansion of
the ERP of Fyac (Velasco and Robinson (2001, Section 4)).

Under the (admittedly restrictive) assumptions of Theorem 1, the ERP of F
compares favorably with the ERP of existing bootstrap-based procedures. The best
currently available results on the performance of bootstrap-based autocorrelation ro-
bust inference procedures in the presence of nonparametric autocorrelation would
appear to be those of Choi and Hall (2000), Gotze and Kiinsch (1996) and Inoue and
Shintani (2001).! Choi and Hall (2000) state conditions under which the sieve boot-
strap delivers an ERP with a polynomial rate of decay arbitrarily close to O (T1),
while Gotze and Kiinsch (1996) and Inoue and Shintani (2001) show that the ERP
is no better than O (T*Q/ 3) when the block bootstrap is applied to Fyac and QO HAC
is constructed using a kernel guaranteed to yield positive semidefinite estimates. It
would be of interest to know whether the bootstrap can be successfully applied to Fj.

Remarks. (i) One-sided tests of Hy : § = 3, can be based on the statistic
T2 (- 35,)
VT2 w (4/T) 57

The null distribution of this statistic is symmetric under the assumptions of Theorem
1. As a consequence,

TV (3-8 T (3-8
Pr ( ) — <c :1+1Pr — T<_1 ) —~ <
VT2 (/T) S 22 \T2Y L k(T S

2

for any ¢ > 0 (with an analogous result holding for ¢ < 0) and it follows that the
ERP of one-sided tests is O (T') under the assumptions of Theorem 1.

(ii) Lemma 2 may be of independent interest. In particular, Lemma 2 is a useful
complement to the following result, often attributed to Chibisov (1972) or Sargan
and Mikhail (1971): for any random variables £ and A,

sup [Pr(§ + A < ¢) —Pr(§ < c)| < inf (Pr(\A! > () +supPr(|f — ¢ < C)) ;
ceR > ceR

see Rothenberg (1984) and Taniguchi and Kakizawa (2000). It is difficult to see how
a proof of Theorem 1 can be based on this inequality (as opposed to Lemma 2).

!Contemporary reviews of bootstrap methods for time series can be found in Biithlmann (2002),
Hérdle, Horowitz, and Kreiss (2001) and Politis (2002).
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4. LoOCAL ASYMPTOTIC POWER
Theorem 1 of the previous section shows that the favorable higher-order size proper-
ties of Fixy p are shared by F,; irrespective of the choice of the weight function & (-) . It
therefore appears sensible to let the choice of & (-) be based on power considerations.
This section addresses the local asymptotic power properties of the test based on Fj
in the context of the general regression model of Section 2.

As do conventional testing procedures, the test based on F}, has nontrivial power
against alternatives of the form RG —r = O (T‘l/ 2) . A precise statement is pro-
vided in Theorem 3, which characterizes the limiting distribution of F,, under local
alternatives of the form

Hi:RB=r+T Y2 (RQ'QQ'R)"s,

where 6 is a g-vector of constants.

Theorem 3. Suppose y; is generated by (1) and suppose assumptions A1-A2 hold.
If§ = TV2 (RQ™'QQ'R")* (RB — r) is fixed as T increases without bound, then

F, —q (Z,+06) (/01 k(1) By (r) By (1)’ dr> B (Z,+96),

where B, (+) is a ¢-dimensional Brownian bridge and Z, ~ N (0,1,) is independent
of B, (+).

Under Hy, F} is asymptotically pivotal with a (nonstandard) limiting distribution
that depends on the weight function  (-) and ¢, the number of restrictions. More
generally, the limiting behavior under local alternatives depends on « (-), ¢ and the
noncentrality parameter §'.

In the search for a weight function such that the test based on F} enjoys good
power properties, it turns out to be fruitful to study the related problem of choosing
k(+) in such a way that Q. enjoys good properties when viewed as an estimator
of Q. As is well known, a variance estimator with optimal MSE properties does
not necessarily deliver a test statistic with good size and/or power properties (e.g.
Andrews (1991, p. 828), Simonoff (1993)). A seemingly pathological exception to that
rule occurs when the variance estimators carry no information about the parameter
of interest and a “perfect” variance estimator (having zero MSE) exists. In that case,
an optimal (from an MSE point of view) variance estimator does indeed give rise
to a test with optimal power properties. Somewhat surprisingly, perhaps, it turns
out that €, is nearly “perfect” if the weight function k (+) is chosen appropriately.
Indeed, it is shown in Appendix A that while the asymptotic truncated MSE of Qs
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is strictly positive for any weight function & (-), the asymptotic truncated MSE can
be made arbitrarily small by employing k. (-) with ¢ close to zero, where

1
+ 2log (%)

ke (1) = =52 - min (r’2 (1-— 7“)72 e 2 (1 - 5)72) (3)

3(1—¢)?

for any € € (0,1/2] and any r € (0,1). As a consequence, the local asymptotic power
function of a test based on F} can be made arbitrarily close to the asymptotic power
envelope? by employing k. () with e sufficiently close to zero.

Admittedly, the finite sample relevance of this near-optimality result is limited
by the fact that the Fj-statistics based on k. (-) and k. (+) are equivalent whenever
max (g,¢') < T~'. Nevertheless, it seems reasonable to believe that small values of
the truncation parameter ¢ deliver test statistics Fj,. with good power properties.
In particular, F),_ should dominate Fxyp = F,, even for moderately small values
of . A verification of that conjecture is provided by Figure 1, which plots the local
asymptotic power of F, ., and Fxyp along with the power envelope in the case where
a single restriction is being tested.?

| FIGURE 1 ABOUT HERE |

Although its power curve lies uniformly below the power envelope, the test based on
F,, ., dominates Fxyp in terms of local asymptotic power. Local asymptotic power
results for one-sided tests (described in remark (i) below) and for tests of multiple
hypotheses are qualitatively similar and are omitted to conserve space. Also omitted
are results for alternative weight functions such as kg5 and kg2, as these are quite
similar to those for kg ;. Specifically, the local asymptotic power of the test based
Fy 005 18 slightly higher than that of the test based on Fj, ,,, which in turn is slightly
superior to the test based on F,,,,. In short, the statistic Fj,, seems to be an
attractive alternative to Fxyp. Table 1 gives selected percentiles of the limiting null
distribution of F,

K0.01°

| TABLE 1 ABOUT HERE |

2The asymptotic power envelope is the local asymptotic power function corresponding to the
. ! _ .
(infeasible) test based on T (Rﬂ — r) (RQT'QQ'R) ! (Rﬂ - T) , whose limiting distribution is

the noncentral x? distribution with q degrees of freedom and noncentrality parameter 8’6 under the
assumption of Theorem 3. The test based on Fy4¢ attains the asymptotic power envelope whenever
O HAC 18 a consistent estimator of 2.

3The curves were generated by taking 50,000 draws from the distribution of the discrete approx-
imation (based on 1,000 steps) to the limiting random variables.
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Remarks. (i) One-sided tests of a single restriction can be based on
TV (RB )
VRO0Q R

Under the assumptions of Theorem 3,
Z1+06
\/fol K (r) By (r)? dr

Now, 2 = F, and the limiting null distribution of ¢, is symmetric, so the percentiles
of the limiting null distribution are related to those of the limiting null distribution
of F,; in an obvious way: Under Hy, Pr(t, <c¢) = % + %Pr (F, < ¢?) for any ¢ > 0,
with an analogous result holding for ¢ < 0.

(ii) The scale factor 1/ ( 3= 252 +2log (&£ 8)) appearing in the definition of . (-)

is redundant for testing purposes but is included in order to facilitate comparison
of the percentiles of the limiting null distribution of F,,_ with the percentiles of the
corresponding x? (¢) distribution. Specifically, the scale normalization implies that

tn —d

-1

Z( [ BB ) 200

as € | 0 because fol ke () By (1) By (r) dr —, I as ¢ | 0 (cf. Appendix A).

(iii) In cases where the series z,u; is persistent, a test statistic based on a prewhitened
version of (), might be expected to outperform F, in terms of small sample size prop-
erties. By analogy with Andrews and Monahan (1992), a VAR(1) prewhitened version
of Q.. can be constructed as follows. Let

—1 N\ -1
OPW — (1 . ) (T 22};( )Sﬁ’) (Ik—A’) ,
where A is a k x k matrix and S, = S, — AS, ;| for t = 2,...,T. A convenient choice
-1
of A is the least squares estimator Apg = <ZtT:2 ﬁtﬁgfl) (ZtTﬁ @t,lﬁ,’ffl) , where
Uy = Ty (yt — xfﬁ) . Under weak regularity conditions, ALS meets the requirements

(on A) of the following corollary to Theorem 3.
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Corollary 4. If the assumptions of Theorem 3 hold and A — A = o, (1) for some A
such that I, — A is nonsingular, then

FPV =7 (RG—r) (RQIOIVQR) - (rB-r)

-1

i (2,4 8) ( /0 (") By (1) By (1) dr) (Z,+6).

(iv) Theorem 3 generalizes in an obvious way to tests of nonlinear hypotheses.
Moreover, proceeding as in Vogelsang (2002), it is straightforward to generalize the
first-order asymptotic theory of this section to models estimated by the generalized
method of moments.

5. FINITE SAMPLE EVIDENCE
A small Monte Carlo experiment is conducted in order to explore the extent to which
the predictions from the asymptotic theory presented in the previous section are likely
to be borne out in finite samples. For brevity, only a location model is considered.
Samples of size T' = 100 are generated according to the following model:

yt:ﬁ+ut7 tzl?"'7T7

where

Uy = PUs_1 + €4, t=2,....T,

u ~ N(0,(1—p)/(1+p) and e, ~ iid. N (0,(1—p)*) with {e;: ¢ > 2} inde-
pendent of u;. By construction, the error u; follows a stationary AR(1) process with
unit long-run variance for all values of p. The null and alternative hypotheses are
Hy: 8 =0and H; : 8 # 0, respectively. The parameter of interest, 3, takes on value
in the set {0,0.1,0.2,0.3,0.4} , while the nuisance parameter p takes on values in the
set {—0.5,-0.3,0,0.3,0.5,0.7,0.9,0.95} . The quality of the distributional approxi-
mation A1(i) is known to be quite reasonable unless |p| is close to one. The values
p = 0.90 and p = 0.95 are included in order to compare various autocorrelation ro-
bust inference procedures in terms of their ability to accommodate nearly integrated
errors without employing alternative distributional approximations (such as those of
Chan and Wei (1987) and Phillips (1987, 1988)).

Six test statistics are considered. The first statistic is Fyac, where QO HAC 18 a
kernel estimator of €2 implemented with the quadratic spectral kernel along with a
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plug-in bandwidth (see Andrews (1991) for details). The second statistic, denoted
FEW. uses Andrews and Monahan’s (1992) AR(1) prewhitened version of Qg 4¢. The
third and fourth statistics are Fxyp and FEW,, respectively, where FEW5 is computed
using AR(1) prewhitened version of Qx5 (see Bunzel, Kiefer, and Vogelsang (2001)
for details). Finally, the fifth and sixth statistics are F,, and FFW | respectively, where
k() = Koo1 (-). Table 2 summarizes the results. For each test statistic, the row
corresponding to 3 = 0 reports observed rejection rates (based on 5,000 Monte Carlo
replications) of 5% tests using asymptotic critical values, while the rows corresponding
to B # 0 report size-adjusted power.

| TABLE 2 ABOUT HERE |

The prewhitened versions of the three test statistics have significantly better size
properties than the test statistics that do not employ prewhitening and the improve-
ment in terms of size distortions does not come at the expense of size-adjusted power.
Among the prewhitened test statistics, F£' and FPW have fairly similar size proper-
ties and both statistics are superior to F;% in terms of size. For moderate values of p,
the ranking of the test statistics in terms of size-adjusted power is consistent with the
predictions from asymptotic theory. Indeed, as suggested by Figure 1, F% is more
powerful than FFW which in turn dominates F{Y5 in terms of size-adjusted power.
Unsurprisingly, the numerical results are somewhat different when w; is highly persis-
tent. The difference between the size of the tests becomes increasingly pronounced as
p approaches unity, with F©'" doing somewhat better than F£}Y; and much better
than FL%.. Interestingly, the ranking of FZVs and FPW in terms of size-adjusted
power is reversed for p € {0.9,0.95} .

Overall, the Monte Carlo results can be summarized as follows. On the one hand,
the results are favorable to the test statistic advocated in this paper, the F°W statistic
implemented using kg1, as that statistic dominates F%, and F£5 in terms of size
and power, respectively. In this sense, the procedure proposed herein is arguably
superior to existing procedures. On the other hand, the fact that conventional test
statistics dominate in terms of size-adjusted power indicates that an even better
procedure may be available if improved approximations to the null distribution of

FIW. and/or Fgac can be found.*

41t is conceivable that this may be achieved by means of an approach resembling that advocated
by Bekker (1994) and Donald and Newey (2001) in the context of instrumental variables regression
with many instruments. A recent paper along these lines, Kiefer and Vogelsang (2002c), finds that
more accurate distributional approximations can be obtained by modeling the bandwidth (employed
in the construction of Qp Ac) as a fixed proportion of the sample size when developing first-order
asymptotic theory for Fyac.
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6. APPENDIX A: ASYMPTOTIC PROPERTIES OF (),

By analogy with Andrews (1991), a comparison of different weight functions can be
based on the asymptotic truncated moments of €2,,. For any h > 0, let

Q. = min <max (Q,.i, —thL;) ,thL;) ,

where ¢ is a k-vector of ones and min (max) is defined element-by-element in the
obvious way.

Lemma 5. If the assumptions of Theorem 3 hold, then

1
lim lim FE [th] = Q/ k (r)m (r)dr,
0

h—oo T—o0

and

1l
hlim Tlim Var [vec <Qn,h>:| = (12 + Kp2) (Q® Q)/ / k(r)C(r,s) kK (s)drds,
where m (1) =7 (1 —r), C (r,s) = min (r, s)* (1 — max (r, s))* and K2 is the k* x k?
commutation matrix.

Any scale transformation of x () preserves the local asymptotic power properties
of F. In view of Lemma 5, it seems natural to normalize the scale of  (-) by imposing
the “unbiasedness” condition fol K (r)m (r) dr = 1. Subject to this normalization, one
might attempt to find a weight function that minimizes the asymptotic truncated
variance of QH, Viz.

(o + Kp2) (20 Q) /0 /0 5 (r) C (r, 8) i (s) drds.

As it turns out, this minimization problem does not have a solution. On the one
hand, C (-, -) is positive definite in the sense that fol fol f(r)C(r,s) f(s)drds > 0 for
any square integrable function f (). On the other hand, for any € € (0,1/2], let k. (+)
be defined as in equation (3). By construction, fol ke (r)m (r) dr = 1. Moreover,

_ 2 _ _
150—408e+280e* _ _4—8¢ +810g(155)

1 1 4 :
/ / ke (1) C (r,8) ke (s)drds = 450 —¢) ) 2

0 0 3—2¢ 1—¢
(50 + 2108 (2))

= ()
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as € | 0. As a consequence, limy, . limy_,, Var [vec <Qﬁh)} can be made arbitrarily

close to zero even if limy,_, limp_, o F/ th = ) is imposed and no optimal (in the

sense of minimal asymptotic truncated MSE) estimator exists among estimators of
the form (),..

Remark. The weight function k. (-) is a truncated and rescaled version of x* (),
where x* () = r2(1 —r)~> for any r € (0,1). Truncation is introduced because
fol k* (r)m (r) dr = oo, while the rescaling achieves fol ke (r)m (r)dr = 1.

The functional form of x* (+) is suggested by the following observation. A varia-
tional argument can be used to show that « (-) minimizes

/01 /01"(7“)0(73 s) ki (s) drds

subject to fol k(r)m(r)dr =1 only if fol C (-, s) k (s)ds is proportional to m (-). In
turn, it is not hard to show that fol C (-, s) Kk (s) ds is proportional to m (-) only if & (-)
is proportional to x* (-).
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7. APPENDIX B: PROOFS
Proof of Theorem 1. Let X = (XN, X! )’ where Xy = ¢ (1) T1/2 (B - ﬁ) and

/
Xp = (w/ (1/T)54, .. —1) /T)Sr- 1) . Under the assumptions
of Theorem 1, X =4 XY2n, where n ~ N(O Ir),

/
Y ONN Oppn
ODN 2DD

is the covariance matrix of X (partitioned in the obvious way) and “=;” signifies
equality in distribution. For any ¢ € R,
(2-9)
<c|=Pr(X'¥.X <0)=Pr(nTun <0),

T2y w(t/T) S

where

T min (1,c71) 0
c 0 —min (1,¢) I

and
TC — 21/21\:[]621/2

B min (1,¢ ) oyy — min (1,¢) oxyopyopy —min (1,¢) UN%QJ’DNEE/;N
—min (1, ¢) 0;\,%22}3%/]\,0[)]\7 —min(1,¢)Xpp.n ’

where YXpp.ny = Xpp — O'J_V%VO'DNO'/DN. Similarly,

Pr (fol /{(r)Z; T < c) = Pr (min (1,¢7") 2% — min (1,c) /01 K (r) B (r)*dr < 0) :

Let kp (1) =k (|T-] /T) and Br (-) = B(|T-] /T) denote discretized versions of & (+)
and B (), respectively. It is easy to show that

1
min (1, c’l) Z?% —min(1,c) / kr (r) Br (1) dr =4 /' Yen, (4)
0
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where

T _ min (1,¢71)
< 0 —min (1,¢)¥pp

and Xpp is the (T — 1) x (T — 1) matrix whose (i, 7)th element is

Spp (i,5) =T7*V/k (i/T)\/k (j/T) (min (i, j) — ij/T) .

Using the distributional equality (4),

)
— 2
< —Pr( = <c>=El(c)+Eg(c),

T2k (t/T)S7
where
Z1(¢c)=Pr(nTp <0)—Pr (n'Tcn < O)

and

Eo(c) = Pr (min (1,¢") Z2* —min (1, ¢) /01 kr (r) By (r)*dr < 0)
—Pr (min (1,c7) 2% —min(1,c) /01 k(r) B (r)*dr < o) :

The proof of Theorem 1 will be completed by showing that sup.cg |21 (¢)] = O (T™1)
and sup g |Z2 (¢)| = O (T71).

Now, using the properties of the normal distribution (Magnus and Neudecker
(1988, Theorem 12.12)) and simple algebra,

3 {(”'Tcnﬂ = [er ()] e (32) <5004 sl

where ||k|| = supg,; |& ()| < oo under A2. Using this display and Lemma 2,
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. 2
sup [Z1 (€)] < 12(1 + [l#]) \/E [(n'm —tan) ]

ceR

and

ceR

</OIKT(T)BT(T)2dT—/OIK(T)B(T)%ZT)Q].

It therefore suffices to establish the following bounds:

sup [ (¢)] < 12 (1 + [|=])) J b

E {(n’Tcn /) ] =0(T7). (5)

(/OlﬁT(r)BT(r)er—/Olﬁ(r)B(rﬁdr)

Proof of (5). The (i, j)th element of ¥pp is

2

E =0(T7?). (6)

Sop (i, §) = (1) 2T 2/k (i/T)\/5 (/T)Cov (s S*j) .

Let ¢ (L) = ¢( )+ (1 - L), 9, L' be the BN decomposition (Beveridge and
Nelson (1981)) of ¢ (L) . Elementary manipulations can be used to show that
loyy — 1] < T My, (7)
1<y o1 Spp (i, 5) — Xpp (i, 5)| < T*Mpp - ||5], (8)
and
opxopn < T *Mpn - ||kl (9)
where

Myy =49 (1) 4; D |

i=0 =0

)
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[e.9]

Mpx =66 ()72 90 +5 6 ()Y
=0

=0

Y

W

and

Mpp =99 ()23 47 +8 [ () |4
=0

1=0

Vi

: ~2
are finite constants (because > - 1, < oo and ) .,

Now,

< oo under Al*).

)tr <TC — T)

<lowy — 1| + (tr (EDD _ 2DD)) —0(T7)
by (7) — (8), while
tr [(TC — Tc)2] < (onn — 1)2 +2|onn — 1| onnTpNTDN + tr l(ZDD — i]DD)Q]
+20 N TN (EDD — 2DD) opN + 40']_\,1N0'/DN2DDO'DN
= 0 (T_Q) + 20]_\5\,0',3]\, (ZDD — ZDD) OpnN + 40]_\5\[0'1)1\7217170[)1\;,

where the equality uses (7) — (9) . By (7) — (9) and a matrix analogue of the Cauchy-
Schwarz inequality (Magnus and Neudecker (1988, Theorem 11.2)),

J;V%VO-/DN (EDD — zDD) OpN = 0']7\5\,157“ |:<EDD — EDD) O'DNO'/DN]

. 2
< JJ_\rgvalpjvaDN\/tT [(EDD — 2DD) ] =0 (T_?’) .

By Magnus and Neudecker (1988, Theorem 11.4) and (7) — (9),

-1 7 < ' -1 —2
ONNODNEDDIDN < Amax (ZDD) oynTpnopy =0 (T77),
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where Apax (E D D) denotes the largest eigenvalue of » pp and

Amax <2DD) <&l [ZT-sin (%)]_2 %]

K
4

in view of Tanaka (1996, Problem 1.2.1) and the fact that 27" - sin(7w/(27)) is a

decreasing function of 7. Combining the results in the preceding displays and using

Magnus and Neudecker (1988, Theorem 12.12),

IN

B| (0t - wton)| = [or (0= 1) 2r | (.- 1) | 0 02),

establishing (5) .
Proof of (6). Upon adding and subtracting fol % (r) Br (r)* dr and using the fact
that By (r) =0 for r < T, the difference

/OlffT(r)BT(r)er—/Oln(r)B(r)er

can be written as

/T [k (r) — k()] Br (r)2 dr + /0 K (1) [BT (7“)2 - B (7“)2] dr.

—1

2
As a consequence, E l(fol kr (r) Br (r)* dr — fol k(r) B (r)? dr) ] is no greater than

four times

( /T 5 () = (r)] Br (1) dr>2 ( / (1) [Br 0 — B dr) ] |

The proof of (6) is completed by showing that each term in this display is O (T2).
First,

E +FE
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([ e )= w0 B2 0 ar) ]

[ ) () w0 B [ 0 B (7 s

< ( sup B [Br(r >/ / |k (1) — k()] |k (8) — K (s)] dsdr
T-1<r,s<1 -1 J7-1

< (OSBSEIE [B (r)* B(8)2]> : (Tsllip<1|(/’vT( ) — H(T))|>

- o),

where the last equality uses supy<, <, £ [B (r)*B (8)2] < 0o and A2.
Second, consider

</°1 %) [Br(r)” = B ()] drﬂ

_ 2/0 /0 k(1) & (s) E [(Br (r) — B(r)?) (B (s)® — B(s)?)] dsdr

E

< 2||/<;||2/01/0r!E[(BT(T)Q—B(T)2) (Br(s) — B (s)?)]| dsdr.

Using the relation
E[B (r)*B (3)2] =7r(1—7r)s(l—s)+2min(r,s)* (1 —max (r,s))’,
the integrand on the last line can be bounded as follows:

sup sup  |E[(Br (r)—B (7“)2) (Br (s ) — B(s )H <1772

0<r<10<s<T-1|Tr]



and

sup
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sup |E[(Br (r)’—B (7")2) (Br (s)>— B (3)2)] | <87

0<r<1T7T-1|Tr|<s<r

As a consequence,

IN

<

/0 /0 B [(Br(r)? — B(r)?) (Br(s)? — B (s)%)]| dsdr

sup / | [(Br (r)? — B(1)?) (Br () — B(s)2)]| ds

0<r<1.Jo

T_ILTTJ 2 2 2 2
sup/o B [(Br (n)? — B(r)?) (Br(s) — B (s)%)] | ds

0<r<1

T sup / C B [(Br ()P~ B(r?) (Br (s — B(s)%)]| ds

0<r<1.Jr-1|77)

17772 4 8772,

so F [(fol k(r) [Br (r)* = B (r)’] dr) 2] = O (T7?), as was to be shown.

21

Proof of Theorem 3. Under the assumptions of Theorem 3, the following con-
vergence results hold jointly (cf. KVB):

and

T'/? <B - ﬁ) —d (Q_IQQ_l)l/z Wi (1)

T71/2‘§LT'J —d Ql/2Bk () y

(10)

where Wy, is a k-dimensional Wiener process and By (1) = Wy (r) — rWj (1) . Now,
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-1
O, =Tk (%) 58,
t=1

/olli (LT—TTJ> (Tﬁlﬂgw) (Tﬁl/QSLTrJ),dT’ (11)

—q QY2 ( /0 P (r) By (r) By (r)’dr) QU

jointly with (10), where the last convergence result uses A2 and the continuous map-
ping theorem (CMT). Moreover,

R (Q—IQQ—1)1/2 Wi () - (RQ—IQQ—IR/) 1/2 Wq () ,
where W, is a ¢-dimensional Wiener process. As a consequence,

TV?R (B _ 5) —q (RQ'QQ R (W, (1) +6)

and

RQ'Q.Q 'R —, (RQ'QQ'R)" ( / . (r) B, (r) B, (r)’ dr> (RQ'QQ'R)"
0

jointly, where B, (1) = W, (r) — rW, (1) and the last convergence result uses A1(ii).
Theorem 3 now follows because

Fo=T(RB—r) (RQ'0.Q'R)  (RB-7)

-1

—q (W, (1) +6) (/01 k(r) B, (r) B, (r)’dr) (W, (1) +9),

where W, (1) ~ N (0, 1,) is independent of B,(-). N
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Proof of Corollary 4. It suffices to show that QF" = Q, + 0, (1). Under the
assumptions of Corollary 4,

T71/2‘§LT'J = T2 (SLT-j — A»SA'LT.J_l)
= (Ik — A) T_1/25A'LT.J + AT1/2 (SLT'J — SAYLT.J_1>

= (I — AT 2811, +0,(1),

where the last equation uses A1-A2 and Billingsley (1999, Theorem 13.4). As a
consequence,

SO
Qrw = <fk — A) - <T2 Tﬁlka (i> §t§’> (Ik - fl’) o Q. +0,(1). [
K — T t p

Proof of Lemma 5. For any h > 0, it follows from (11) and CMT that

A

., = min <max [QK, —thL;] ,thL;)

1
—4 min (max [91/2 </ k () By, (r) By (r)'dr) QY. —hbkbq ,thL;C)
0

as T — oo. Moreover, it follows from CMT that
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1
min (max {91/2 (/ k (1) By (1) By, (r)/dr) QY. —thL;;| ,thL;C)
0

1
—g Q12 </ k (1) B (1) By, (r)'dr) Q¥
0
as h — 0o. Repeated application of Billingsley (1999, Theorem 3.5) therefore yields

lim lim B [Qn,h]

h—o0 T—00

1
= hlim E lmin (max [91/2 (/ k (1) By (1) By, (r)'dr) QY —thL;} ,thL;c>:|

= F [Ql/ 2 ( /0 1 k (r) By (1) By (1) dr> 91/2']

and
N 1
i o i ()] <o (2 [ 03117 2)]
h—o0 T—00 0

Now,

E [91/2 ( /0 (1) B (1) By (r)’dr) 91/2'} o /0 () m () dr.
because E (Bj, (r) By (r)") = m (r) I. Similarly,
Var [Uec (91/2 l /O (") B (r) Ba (1) dr] 91/2')]
= (20" Var [Uec ( /0 1 % (r) By (r) By (r)' dr)] (02 0 02

— ([k2+Kk2)(Q®Q)/O /0 k(r)C(r,s)k(s)drds,
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because

Cov (vec (By (r) By, (r)') ,vec (By, (s) Be (s))) = C (1, s) (Ijz + Kj2)

and

(QI/Q ® 91/2) (Ik2 + KkZ) (Ql/2 ® 91/2)/ _ (Ikz n Kk2) (Q 2 Q),

where Cov (X,Y) = E(XY')— E(X) E(Y)" (for any random vectors X and Y) and
the last display uses Magnus and Neudecker (1988, Theorem 3.9). n
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8. TABLES

TABLE 1
PERCENTILES OF F;

K0.01

q 90% 95% 97.5% 99%
1 3.613 9.529 7.590 10.78
2 7.508 10.42 13.77 18.60
3 12.18 16.61 21.30 27.99
4 17.72 23.29 29.39 38.49
) 24.39 31.35 38.70 48.92
6 31.67 40.04 48.41 60.53
7 39.99 50.29 60.64 76.07
8 49.24 61.24 73.41 89.26
9 58.68 72.33 85.06 104.7
10 69.97 85.44 100.6 121.0
11 82.01 98.89 115.8 138.9
12 94.72 113.2 132.8 156.7
13 107.9 128.3 149.3 176.2
14 123.0 146.1 170.1 199.9
15 137.6 162.3 186.9 221.7
16 153.8 180.9 206.9 238.7
17 171.0 200.8 229.5 267.1
18 188.7 2204 250.8 288.5
19 207.4 240.9 273.6 314.4
20 228.1 264.2 296.8 340.6
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TABLE 2
SIZE AND SIZE-ADJUSTED POWER: MONTE CARLO RESULTS
5% LEVEL TEsTS, T = 100
Test p

Statistic I} -0.5 -0.3 0 0.3 0.5 0.7 0.9 0.95
0 4.6 4.8 5.8 8.3 104 124 25.1 38.5
0.1 15.8 15.9 15.7 15.3 15.1 14.6 14.4 13.7
Frac 0.2 50.1 49.8 49.3 48.2 45.8 44.8 41.1 38.3
0.3 82.7 83.4 83.3 82.6 78.6 77.0 70.7 66.5
0.4 97.1 97.5 96.9 97.2 95.2 95.2 89.1 85.6
0 4.4 4.4 4.8 5.2 6.0 6.6 12.6 19.2
0.1 12.6 13.0 12.9 12.9 13.8 13.4 13.3 12.8
Frvi 0.2 36.8 38.2 36.2 37.5 37.0 35.9 34.1 32.6
0.3 65.6 65.4 65.1 64.6 63.4 64.0 59.1 55.5
0.4 85.9 85.1 84.7 83.8 82.8 83.4 78.4 74.0
0 2.6 3.2 5.0 6.8 9.8 12.3 23.9 34.9
0.1 13.4 13.9 13.8 14.2 13.8 13.9 13.6 13.9
F, 0.2 39.8 42.3 40.5 42.4 39.5 40.4 37.5 38.1
0.3 72.1 73.2 72.9 73.8 70.0 70.7 66.0 65.1
0.4 91.9 92.4 92.3 92.1 89.4 90.2 85.4 84.1
0 5.9 5.9 6.1 6.5 7.5 7.6 14.7 22.6
0.1 16.3 16.4 15.2 15.0 15.5 14.5 13.6 13.7
FIv 0.2 50.3 50.9 48.8 48.0 46.5 44.3 38.4 36.2
0.3 83.1 83.8 82.4 82.5 79.6 77.3 66.8 60.7
0.4 97.3 97.6 96.7 97.1 95.8 94.7 85.4 78.2
0 5.0 4.3 4.9 4.3 4.8 5.4 8.8 13.3
0.1 12.1 14.4 124 13.6 13.9 12.8 12.1 13.7
F}E‘V}’B 0.2 35.2 38.9 35.7 39.2 37.9 35.9 33.8 33.6
0.3 63.8 65.8 63.9 67.5 64.7 63.4 58.8 55.8
0.4 83.5 85.2 84.1 85.9 84.3 83.9 77.1 72.1
0 4.0 3.5 4.6 4.4 5.3 5.4 6.9 10.5
0.1 13.1 14.5 13.4 14.4 14.0 13.4 12.0 12.7
FEW 0.2 37.6 41.7 38.5 41.6 40.0 38.3 33.1 30.2
0.3 67.6 72.1 69.3 73.1 70.1 69.1 55.5 49.4
0.4 88.4 91.1 90.3 92.0 89.6 88.4 73.2 63.5
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9. FICURES
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FIGURE 1: LOCAL ASYMPTOTIC POWER, ¢ = 1.



