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We consider the following classical programming problem:

Min Ij"(xl,...,x,,),
s.t. g (X1yeeXn)+bi=0 for i=1,...m<n. (CPP)

Letting

X = (X1,0-e5Xn)>s
IxXn

and defining
G(x) = (g'(x),....8" (x)),

this problem is written in matrix notation as
MinF(x) st. Gx)+b =0.

A point X is a local solution of CPP if G(X)+ b’ =0 and there exists a
neighborhood N of % such that x€N and G(x)+ b’ =0 implies F(x)=
F(x).
We associate with this problem the Lagrangian
Lxp)=Fx)+ [(:,)g’rg) +b’] P

where p’ = (pi,....pm) is a vector of Lagrangian multipliers. We assume
hereafter that the functions F, g',....g™ are twice continuously differen-
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tiable, and define

aFIBX|

= . .

aF[ax,

ag'lox, +-ag™ax,

G, = : : )
ag'ldx,---3g™ | 9x,
and
3’Fjox? ---3*Flox,ax,
Fa=| s
32F|3x,0x-+-3°F/[ax?
Note that
L,=F,+G,p and L,=GX)+b,
and that

Lxszxx+i=2]g;xpi'

A Lagrangian critical point is a vector

(x, p),
nxl mxl1
such that
L,xp)=0 and Lyx,p)=0. (LCP)

The first result of classical optimization theory establishes that under
mild non-degeneracy conditions on the constraints, each local solution
of CPP will correspond to a Lagrangian critical point. We say CPP is
strongly non-degenerate at a point x if

rank G.(x) = m. (SND)V

We say CPP is weakly non-degenerate at a point x if

rank Gy (x) = rank[G,‘(x)EF,(T:)]. (WND)
Condition (SND) will hold in most practical programming problems, and
can be made to hold in any CPP by an arbitrarily small perturbation of
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the constraints. Hence, we concentrate our attention on problems satis-
fying this condition.

Theorem 1. Suppose % is a local solution of CPP, and SND holds
at . Then there exists p such that (x,p) is a LCP.

The proof of this theorem can be found in many textbooks, and will
not be repeated here. See, for example, Intriligator (1971), pp. 31-33).

The next result establishes that at a local solution ¥ of CPP, SND
implies WND, and WND holds if and only if x corresponds to a LCP.

Theorem 2. Suppose % is a local solution of CPP. If SND holds at
%, then WND holds at %. There exists p such that (x,p) is a LCP if
and only if WND holds at Xx.

Proof: If SND holds at X, then Theorem 1 implies the existence of p
such that F(x) = —G.(X)p. But this implies rank G«(X) = rank[G.(X):Fx(X)],
and WND holds.

The theorem of the alternative for the solution of linear equations
states that there exists p such that F«X)=—-G.Xp if and only if
condition WND holds. But this is precisely the condition needed for the
existence of p such that (x,p) is a LCP, since Ly(X,p)=G(X)+b' =0 is
satisfied by assumption. Q.E.D.

The next result establishes that at a strongly non-degenerate local
solution of CPP, the Hessian matrix of the Lagrangian, Ly, is positive
semidefinite subject to constraint.

Theorem 3. Suppose % is a local solution of CPP and SND holds at
%. Then, zz=1 and z'G«(x) = 0 imply 7’ Lo (X,p)z =0, where (X,p) Is
the LCP whose existence is established by Theorem 1.

Proof: As in the proof of Theorem 1, SND implies that the system of
equations
G(v,w)+b' =0,
where

xX=(v, w
mx1 (n—-m)xl
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is a partition of x such that G,(v,w) is non-singular, has a solution

v = h(w)

mx1

in a neighborhood of w satisfying ¥ = h(w) and G(h(w),w) + b’ = 0. Define
f(w) = F(h(w),w). Then W is an unconstrained local minimum of f(w).

Let

(n—m)x1

be a vector satisfying y'y = 1, and consider f(w + fy) as a function of a
scalar 6. A Taylor’s expansion in 6 yields

2
f+ 0y)~ (@) = 0¥ Ful®)+ 2 y'Funl + BY)y,

where § is in the interval between 0 and 6. Since 0 =< f(W + 0y) — f(W) for
8 sufficiently small, we obtain the necessary conditions f.(%)=0 and

Y wm(W)y Z 0. _
Differentiating the identity g’'(h(w),w)+ b; =0, we obtain

. B m . '- '.
h, gl+gi =2 hi g, +g&i =0,

n=myxm mxl  (n=-m)xl j=1n—mx1l XU (n—m)x1

0=3 hiumgh+ ; > hi(hty gl + 2 [highe+ guu(ha)]+ gl
=1 =1 j=1 i=1
(i)
Differentiating f(w) = F (h(w),w), we obtain

fe=h.F,+ Fy= 2, hiF, +F.,
j=1

and

m

.fWW = Z h{V\VFUj + 2 E hv];(hvkv)'Fujvk + 2 [hiFv,-w'*' va,-(hv’;')’] + Fww
i=1 k=1j=1 i=1
©)
Let p be the vector of Lagrangian multipliers given in the proof of

Theorem 1, p = — G,(v,w)"' F,(¥,w). Multiply each equation (i) by p; and add
it to equation (0) to obtain
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& &, . L, i Lo][h
=S pi 50 |+[ h, | v L Lo 1 ]
for ;"W"[F°f+§p'g”f] L i) [LWELW][IW]

(—m)xm' (n—m)2

But
L.@#%) =F,+2 pg,=0,
i=1
and we have

P Lvw | Lvw || hw

Y fwwy = ¥'Theile] [L:vv-wa] ['i;'] y=0.

But z’ = (u',y’) satisfying z'G«(X) =0, or u'G(¥,W) + YG.u(¥,w) = 0, implies
v’ = —y'G.G,' = yh,, and hence

pon L i Lw 2] = v >
(“”)[LWELW][y] Yfwuy = 0.

This proves that L,(X,p) is positive semidefinite subject to the constraint
G.(X): see Section 2 of Appendix A.1. Q.E.D.

The next result shows that a sufficient condition for a LCP (x,p) to
yield a local solution to CPP is that SND hold at ¥ and L(X,p) be
positive definite subject to the constraint G,(X)

Theorem 4. Suppose (%,p) is a LCP, and suppose SND holds at x.
If zz=1 and ZG,%) =0 imply zLu(X,p)z>0, then X 1s a local
solution of CPP.

Proof: We give a proof by contradiction. Suppose there exist

Zy
nxi
and 6, such that ziz, =1, 6,0, G(x+ 6z.)+b' =0, and F(X+ 6iz) =
F(%). Without loss of generality, we can assume z; —>2. Consider F(x+
6z:) and g'(x+0z) as functions of 6. Taylor’s expansions of these
functions around 8 = 0 yield
2

F(&+ 8z0) — F®) = 0u2iFu®) + 2 i Pl + 020021, )

. N 2 . -
g (R+ 820 + b = 0,2igi(R) + 2 2ighR+ Oz, ()
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w_here 6%, 8. are in the interval between 0 and 6,, and we have used
g'(X)+ b; = 0= L, (X,p). Multiplying equation (i) above by p; for each i
and adding it to equation (0) yields, since g'(X + 6xz) + b; = 0,

0= F(i"' Okzk)— F(i)
_ oo, OF - 0 SR i =
= GrzilL(X,p) + 3 Zk Fo(X+ 0kzi) + 2_; gxlX+ 0%z )P: | Zk»
or dividing by 8; and taking the limit zx -z, 6 —0,
0=z L(X.p)z.

But dividing (i) by 6. and taking the limit z; -z, 6 —0 yields, since
g' X+ 6,z,)+ b =0,2g;(X)=0.Then z'z = 1,2’G(X) = 0, and 'L o(X,p)z =
0 contradicts the hypothesis. Q.E.D.

Lemma 4 in Appendix A.1 provides the following reformulation:

Theorem 5. Suppose (X,p) is a LCP, and suppose in the matrix

Gx(X)

nxXm 9

0

mxXm

Lu(%p) |

nxXm

G (®) |

mXxn H
there exists a nested sequence of principal minors with the sign
(—1)™ formed by deleting r symmetric rows and columns from the
first n, for r =0,...,n —m. Then SND holds and x is a local solution

of CPP.

Proof: For r =n —m, the principal minor above is, except for sign,
the squared determinant of a m X m submatrix of G(X), establishing that
SND holds. Lemma 4 in Appendix A.1 establishes the result. Q.E.D.

A series of examples demonstrate the role of the assumptions in

Theorems 1-4.

Example 1. Minx,+x} subject to x{=0. The minimum is at X; =
%=0 where FyX)=(1,00 and glX) =(0,0). Then rank g;X) <
rank (g)(X) F(%)) and WND fails, so the Lagrangian method cannot be
applied.

Example 2. Min —x3+x} subject to xi=0. The minimum is at
£, = %= 0 where '
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F,(x)Y = (0,0) = gx(X)',
and WND holds. Then (%,5) is a LCP for any p, and

__...[26-1H O
Lxx(xsp) - [ 0 2]-
For p <1, Lu(%,p) is not positive semidefinite subject to gx(X). Hence,
WND cannot replace SND ln Theorem 3.

Example 3. Min — X 2+ x3 subject to —x1+xi=0. A minimum is at
X, =x=1, where gu®Y =(—2,2) and SND is satisfied. Then (x,p) with
p=-11is a LCP and L (%,p) is the zero matrix. Then L, is positive
semidefinite, but not posmve definite, subJect to constraint.

Example 4. Min x3+2x,x,+ x3+ x3 subject to x;—x=0. The mini-
mum occurs at X =0, where

g«(X)y = (1,—1,0),
Fyx)' = (0,0,0),

and
2 20
Foa®)=LaX =2 2 0]
0 0 2

Then SND holds and p =0. L«(X) is positive semidefinite, and subject to
the constraint g,(X)'z = 0 = z, = z, is positive definite.
A final comment regards the maximization problem

Max F(x) s.t. G(x)+Db' =0. (CPP2)
This is equivalent to the minimization problem
Min[~ F(x)] st. —G(x)—-b =0, ™)

to which Theorems 1 and 5 apply. Hence, defining L*(x,p)=
F (x) + [G(x) + b']p, we have the following resuit:

Theorem 6. Suppose X is a local solution of CPP2 and SND holds
at . Then there exists p such that (x,p) is a LCP. Alternately,
suppose (%,p) is a LCP, and suppose in the matrix

LE&.p) | G«(X)
ey | o)

nXxn

KRN

>




382 Daniel McFadden

there exists a nested sequence of principal minors with the sign
(= 1" formed by deleting r symmetric rows and columns from the
first n, for r =0,...,n—m. Then SND holds and X is a local solution

of CPP2.

Proof: The proof of Theorem 1 applies without modification to the
first part of this theorem. To prove the second part, we apply Theorem 5
to the minimization problem (*), obtaining the sufficient condition for X
to be a local solution that

- Gx(i)' i 0 I ’

have a nested sequence of principal minors of sign (—1)". Reversing the
sign of all rows in the principal minor formed by deleting r rows and
columns multiplies the determinant by the factor (—D™™"; it is then
required to have the sign (—1)""m = (—1)""". But these are just the
principal minors considered in the statement of the theorem, giving the

desired resuit. Q.E.D.




