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Problem Set 2
Suggested Solutions

1.

Following the notation in Appendix A.2 of D. McFadden “Definite Quadratic Forms
Subject to Constraints” in M. Fuss and D. McFadden Production Economics, Vol. 1, we
have for the (n+m)x(n+m) Hessian matrix of the Lagrangean:
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! As you will notice from the proof that follows, there was a typo in the question. L, , Was meant to be the

Hessian of the Lagrangean for which a more appropriate notation is D*L. My true apologies for any
inconvenience and frustration this might have caused you in attempting this question.



Econl03-Fall03

Consider that the nXm matrix G_ =

rank G <m.

Then its columns are linearly dependent. Hence, there will be at least one column, say
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does not have maximal rank:

column J, that can be expressed as a linear combination of the other m —1 columns.
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At the critical point (X, p), we have:
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Using the above, substitute for the (n+/)th row and column of the Hessian matrix.
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But, by its definition, at the critical point (x, p), we have:

L(x,p)=0
[F.+G.pl=0e
or| ] |2 9"
ox, .5) o, &) o, (%.p)
+ ' rp=0&
oF dg" dag"
9%l 9%, | ¥, |5 |
OF & g’ ]
g-i_ , P, ox
1 j=1 1 (x,7)
=0
OF [ §, 9%
J
axn J=1 axn (%.7)
N
x 2705,
(z.p) J=l U(E.p)
E)F. X dg’
Fo 2Py,
LR | | /= " |(z.p)
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Consequently, evaluated at the point (X, 7), the Hessian matrix of the Lagrangean can be
written as:

D’L=
I Y A N P u dg! & Jdg’  og' dg' g |
- : + = . - : + : — A= =
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— + = — -5 1= =
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9g ai 0 0
8)(1 axn
dg' og
A= A, =
_Zj l axl ; l axn
agln agm 0 0
i ox, ox, |
B 1 m
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: : : aél . g
0 . 0 — A
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This matrix has zero determinant because its (n+/)th row (column) is a linear
combination of the rest (n+m-1) rows (columns).

Note:

The importance of this result is explained in Question 5/Part (b) below (pp. 12). In the
Lagrange theorem we require that the Jacobian matrix of the constraints DG = G_ has
full rank (i.e. full column rank since we always consider the constraints to be less that the
choice variables k < n in these problems). This requirement is called the Non-
Degeneracy Condition (NDGC) and is needed in the proof of the theorem to ensure the
matrix G, has an invertible (mxm) sub-matrix so that the vector p of Lagrangean

(nxm)

multipliers in the first order condition that defines the LCP:

F.+G p=0

indeed exists.
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’f d'f
: : . . s x> oxy 2a 2c
2. Consider the Hessian of the given function: D~ f = =
*f f| [2¢ 2b
dhx 9y’

For f'to be concave, a necessary and sufficient condition is for the Hessian to be negative
definite.

The leading principal minors of D*f are given:

M, =2a
2a 2c 5
2= gp= 20 =)
We require
a<0, ab—c*>0, de R=a<0, b<0, ab>c*, de R (D
Note:

Recall from Problem Set 1/Question 4 that a necessary condition for a square, symmetric
real matrix to be negative definite is for its diagonal elements to be all negative. This is
clearly satisfied by (I).

3. Consider some A€ [0,1] and any x,ye D c R".

By D being convex, Ax+(1-1)ye D.

The following shows that f : D — R is indeed convex.
f(/ix+(1—/1)y)
:supﬁ(/lx+(1—l)y)
=f7(/1x+(1—/1)y)
<Af; (x)+(1=2) £ (»)
< Asup f;(x)+ (1= 2)sup £ (»)
=Af(x)+(1=2)f(»)

Note that the third line uses the fact that each function f, : D — R is bounded on D.

Therefore, since Vxe D, f,(x) is some real number for each function f,(.),
sup f, (Ax +(1- /l)y) exists. Let it correspond to some f;: D — R for some i € [ .

The fourth line uses the fact that all functions f,: D — R, ie I (and, hence f-:D — R
also) are convex.
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With respect to the function g, an attempt towards a similar proof breaks down on the
fifth line as the following shows. This function cannot be convex unless inf f;(x) gives

the same function f. :D — R overall xe D - in which case, the sign of the fifth line

below becomes an equality and the convexity proof holds.

g(Ax+(1-2)y)

=inf /;(Ax+(1-4)y)

= f.(Ax+(1-4)y)
<Af(x)+(1=2) £ ()

> Ainf f;(x) + (1= A)inf £;(»)
=g(x)+(1-2)g(»)

Note again that the third line uses the fact that any function f,: D — R is bounded on D.
Therefore, inf f (lx +(1-4) y) exists and let it correspond to some f.:D — R for

some i € 1.
The fourth line uses the fact that all functions f,: D — R, ie I (and, hence fl .:D—>R

also) are convex.

4.
X
u(c) ¢ X
a. Letu(c)=| . |c= , z= and b = /(%)
u(c c X '
( T) T T f(.xT_l)
The given optimization problem:
Mq)Tl
T
max » u(c,)= max
Cp,Cy esCp e €15y osCp .
u(ey))
S.L.
c+z=b
c20
z20
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b. In this problem we have T c-type and T x-type choice variables, T equality
constraints and 27 non-negativity constraints. Let:

gl(cl,x1)=61+x1—x and gj(cj,xj_l,xj)zcj+xj—f(xj_l) for j=2,..,T.
4

Ay

H

We need to employ 37 Lagrangean multipliers: p=| . |e R

My
P

Pr

The Lagrangean function:
L(CyooyCry Xy s Xgs Ay ly s My Py P ) =

T T T T
Dule )+ Ag e, x ox )+ D ie, + px,
1 (=1 t=1 t=1

1=

The first-order conditions:

—g'(c,,x, X))+, =0 fort=1..T (1)

oL

paall
A ig’ (¢, x,_,x, )+ A, ig”1 (c,,x,,x,,)+p, =

&< ox, ox, for t=2,.T ()
Aec,+p, =0

L
Ade,+p, =0
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Set IT
oL .
J: leg (ct,xt_l,xt)z 0 fort=1,..,T 3)
t
Ay
ou, ¢, 20
M, 20 = M, =20 for t=1,...,T 4)
a_L_O lutct =0
"oy,
9L
ap, x,20
p, 20 = p, 20 for t=1...,T (5)
oL _, px, =0
" op,

Note that the sets of equations (1) and (2) above define a 27x2T system of equations.

c. For the sufficiency conditions see the theorem of the second-order conditions
described in part (c) of the next question.

Note, however, that, in this setting, in the case where the function f'is linear then, because
all of the equality constraints are linear in the choice variablesc,,..,c,, x,,.., X, it suffices

T
for the objective function u(c)= Y u(c,) to be quasi-concave. This would be ensured,
=1

for example, if the elementary function u(.) is quasi-concave in its argument.

a. The consumer’s optimization problem:
maxu(q,,q,)=Ing, +Ing,

491,92

S.t.

pl(ql)ql +P2(q2)q2 <I
q, 2 0 i=12
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b. The Weierstrass Theorem:
Let D < R" be a compact setand u: D — R a continuous function on D.
Then u attains both a maximum and a minimum on D.

That is, Elg,q_eD:u(g)Su(q)Su(q) forany ge D

The consumption set D = R> N {(q1 .q,)€ R* : pg)q, + p,(q,)q, < I} is bounded
below by the point (0,0) and above by the line defined by the two points

~ - 1 ~ ~ 1 .
(7,,0)e R* : p,(§,)=—=and (0,7,)e R* : p,(§,) = — . Hence, it is bounded.
1 q,
Note that since p, is strictly increasing, it is injective.

~ ~ 1 1 - . .
Hence, ¢, >4, = p,(q,)> p,(G,) = < —— and similarly if one starts with

nla) p(q)

some ¢, < g.. Which shows that for each pair p, : i =1,2 the two points (g,,0),(0,7,)
given above are unique.

The set D is clearly closed (see Fig. 5.1 — for a given pair of functions p, : i=12 the

budget set D is the triangular area shown which is bounded and, by including its border
lines, also closed).

q,
I
r(q,)
D
1 q, Fig. 5.1
0 p(4,)
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The Lagrange Theorem:
Let u:R" — R and g’ :R" — R with i=1,2,...,k be C' functions.
Suppose that ¢ is a local maximum or minimum of « on the set

D=Un{q:g,(q)=0, i=1,..k}  where U< R" is open.

g'(q)
Let g(gq)=| and suppose also that rank(Dg(q*)) =k.
g"(q)
A
Then there exists a vector (of Lagrangean multipliers) 4 =| ~ |e R" such that
My
Du@j+§yu&%f):o (L)

i=1

In this example, we have three constraints:
g'(9)=1-pr(a)a-r(a)e
gk+l(Q1aQ2):qk for k=12

H
Hence, we need three Lagrangean multipliers ¢ =| u,

My

The Lagrangean function is given:

3
L(C]1Qz;ﬂ1ﬂ2aﬂ3): “(CI15‘12)+Zﬂkgk(q1a‘b)
k=1

=Ing, +Ing, +ﬂ1(1_p1(%)% _pz(%)%)"';uz% + 159,

10
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The first order conditions
Set (1
oL

—=0
a%

0
MU‘I[ _ﬂlg(pl(ql)QI)-i_ﬂz :0 =
1

1 ,
__;ul(pl(%)"'pl(%)%)"':uz =0

1

aL:

—=0¢<
a%

0
Mqu —H, g(pz(%)%)'huz =0

2

1 ,
__ﬂl(pz(%)+p2(%)‘]2)+/u3 =0
2
Set (11
oL
a_:(){:}Pl(%)%"'pz(%)% =1
1
oL >0
o, 9,20
M, =20 or M, 20
aL qu =0 QZILIZ :0
o,
oL >0
ol q; 20
My, 20 or My, 20
aL #3 :0 QSIUS :0
ol

(1

(2)

3)

(4)

()
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Note that the Lagrange theorem gives only necessary conditions for the existence of a

maximum. In other words, we claim that, if a (possibly local) maximum exists, it must

satisty equations (1)-(5).

11
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For the required conditions of the Lagrangean theorem to apply:

(1) The condition rank(Dg(q*))zk is called the constraint qualification

condition. It plays a central role in the proof of the Lagrange theorem (in

particular, it ensures that the Jacobian matrix Dg(q*) contains an invertible

kxn
kxk sub-matrix, which may be used to define the vector of Lagrangean
multipliers ). This is obvious by considering the fist-order condition (L) in

matrix form:
L, (q*; ,u*) +g, (ﬂ*)ﬂ* =0 g, (71'*),[[* =L, (q*; ,u*)
For a vector of Lagrange multipliers 4" to exist such that (L) holds, there must

exist some kxk sub-matrix of g q(q*) which is invertible.

nxk

More importantly, it turns out that if the constraint qualification condition is violated,

then the conclusion of the theorem (i.e. equation (L)) may also fail. That is, if ¢" is a

local maximum at which rank(Dg(q*)) <k , then there need not exist a vector € R"

such that Du(q*)+ Zk:,ul.Dgi (q) =0.

i=1
In this example, we have
8g2 ag3
Deglg)=| %0 9% 9% {Pl(%)%+pl(ql) 1 0}

dg' dg’ 9’| |pi(a.)a, +p.(g,) O 1
a% an an

This is a 2x3 matrix and, therefore, rank(Dg(g))<2. Moreover, since it contains the
: |1 0 e
non-singular sub-matrix o 1/ we have rank(Dg(g))=2 and the condition is satisfied

at any point ¢ (including, of course ¢").

12



Econl03-Fall03 Prepared by: Theo Diasakos

(2) Both functions u,g:R* — R are C'
(3) Since we do not allow the agent to consume negative amounts of any of the two

commodities, U = R which is an open subset of R’

c. For sufficiency, we need to consider the second-order conditions for the problems
of optimization under equality constraints. Recall our notation regarding the

Langrangean function:

3
L(%qz;ﬂlﬂz ,,u3)= “(%:qz)"' z/ukgk(%s‘b)

k=1

We will also assume in this part that both u, g': i=1,..,k are C* functions.

Theorem:

Suppose there exist points ¢ € D, 4 € R* such that:

1. rank(Dg(q*))zk and
k

2. Du(q*)+zlui*Dgi(q*)=0
i=1

Define Z(q*) ={ze R’ :Dg(q*)z = 0} and let D*L(q ;) denote the nxn matrix of the

k
second derivative of L(- ;4) with respect to g: D*L(q ;) =Du(q)+ Y u,D’g' (q).
i=1
k

Denote by D°L the nxn matrix DZL(q*;,u*) = Dzu(q*)+2ﬂ;D2gi(q*).

i=1
Then:

e Ifz'D’L'z<0 forall ze Z(q*) with z # 0, then ¢ is a strict local maximum of

uonD.

o Ifz'D’L'z>0 forall ze Z(q*) with z# 0, then ¢ is a strict local minimum of

uonD.

13
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Note that the sufficient condition for local maximum (minimum) corresponds to the
quadratic form z'D’L’z being negative (positive) definite subject to the constraint

Dg(q*) and, thus, to the symmetric matrix D°L (which is the Hessian matrix of the
Lagrangean function evaluated at the critical point(q*; ,u*)) being negative (positive)
definite subject to the constraint Dg(q*) . In other words, the Lagrangean function must
be negative (positive) definite subject to the constraint Dg(q*), in the neighborhood of

the critical point (q*, ,u*) .

To be able to make use of this theorem, we need to recall our notation from PS1/Question
2. In that question we saw that the definiteness of a symmetric #Xn matrix 4 can be

completely characterized in terms of its sub-matrices. We will now examine a related

question: the characterization of the definiteness of 4 on only the set [z#0:Bz=0]

where B is a kK xn matrix of rank £.

Let 7 =(7,,7,,..,7,) a permutation of the integers {1,2,...,n} and IT the set of all

permutations of the integers {1,2,...,n} . Denote by 4" the symmetric nxn matrix
obtained by applying the permutation 7 to both the rows and the columns of 4:

a a .a

nm 7Ty I,

A" =

Let also B/ denote the kX n matrix obtained by applying the permutation 7 to only the

columns of B:

blzz'I blﬂ'z b 1z,
[
B, =
_bkn'1 krm, bkzz',, i

14
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In an obvious extension of this notation, 4" will be the /x/ sub-matrix obtained from
A" by retaining only the first / rows and / columns of A" . Similarly, B, will denote the

kX1 sub-matrix obtained from B; by retaining only the first / columns of B; .

4y @
Denote also by 4, the sub-matrix 4, =| " |. Similarly, denote by B,, the
a4 a,
bll b12 bll
sub-matrix B,, =
bkl ka bkl

Finally, given any /€ {L,..,n}, let C, the (k +1)x(k +1) matrix obtained by “bordering”

the sub-matrix A4, by the sub-matrix B,, in the following manner:

0 0 b, b,

C :|:Ok Bkl:| _ 0 . 0 b, by,
: B/Z; Al bl 1 bkl al 1 all
b, b, a, a,

15
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Theorem™::

Let A be a symmetric nXn matrix and B a kxn matrix such that |B,|# 0. Then,

1.

z" Az >0 for all z such that Bz =0 if and only if and only if (- ‘C *1>0 for all

re(k+1,..,n) and forall zeII.

z" Az <0 for all z such that Bz =0 if and only if and only if (- ‘C”‘ >0 for all
re(k+1,..,n) and forall 7 II.

z" Az >0 for every z such that Bz =0 if and only if and only if (— ‘C ‘ >0 for
all re (k+1,..,n).
z" Az <0 for every z such that Bz =0 if and only if and only if (- ‘C ‘> 0 for
all re (k+1,..,n).

In the Lagrangean applications we need to consider two different cases for applying the
theorem above:

1.

When all of our constraints in the vector g(g) are equality constraints then we
take: 4=D’L and B= Dg(q*) . The matrices C, are called the bordered
Hessians since they are constructed by bordering an » X7 sub-matrix of the
Hessian D’L’, with the terms obtained from the matrix Dg (q*) :

When we also have inequality constraints within the vector g(g), then for the

examination of the second order conditions we only consider those constraints
that are actually binding at the critical point ¢~ under study. Let g” (q) the set of

binding constraints at ¢ . Now take: 4= D’L but B = Dg” (q*)

By inspection of the objective function of our example, we see that neither of the non-
negativity constraints ¢, =0, ¢, =0 can be binding at an optimal point. Hence,

k =1and r can only take the value 2.

? Note the difference between parts 1 and 3 on the one hand and parts 2 and 4 on the other. In parts 1 and 3,

the term (—l) is raised to the fixed power £, so that the signs of the determinants ‘Cf‘ and |Cr| are

required to be all the same. In parts 2 and 4, this term is raised to the power 7, so that the signs of these
determinants must alternate.

3 Note also that this theorem essentially claims that the definiteness of the matrix A4 subject to the constraint
B is given by the definiteness of the bordered matrix C.

16
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Hence, we have:
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L

o % %
a% an
Jdg'  9°’L  9°L
C, = >
dg, dq; 99,9,
dg'  9’L d°L
_an a‘b% aq; |
o L] e oL
|C |__ai dq, 99,4, +ail dq, a%z
2 dq,|9g"  9°L | 9q,|dg" 0°L
dq,  9q; 99, 94,4,

=(p/(q,)a, + p(g,))_

—(p5(g,)a, + p,(a,)

=(p(g,)a, + p,(q,))
+(p5(9,)a, + py(q,))

Note that:

€= (plla )+ 0 )){—2+p:

+(p3(q,)g, +pz(q2))2( !

[ql

1

2(1
q

—+p/(q,)q, +2p](q,)

(p(q,)g, + pi(q,)) 0

CACARTAD) qi (p2(g:)a: + 2172 (g,))
1

-—— -

(p(g,)a, +2p!(q,))
0

—(pi(q,)g, + p.(q,))

9,

—(p3(a,)q, + p,(,))

+p3(q,)a, +2p5(q, )J

—+p/(q,)q, +2p](g, )j

1

Lt p2(a)a + 2 (g, )J
q,

—+p/(q,)a, +2pf(q1)] >0

j< _((pf(ql)‘ll +p(,))] [ 1
q

P3(4:)q, + pa () \ 42 Pl varila, )j

2

17
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Since, k=1, r=2, if we had |C2| > ( at the critical point q* , this would be sufficient to
give z' D°L'z <0 for every z such that Dg(q*)z =0. Consequently, ¢~ would be a strict

local maximum.
Clearly, this condition would be satisfied if we had (evaluated at (ql* .0, )):

1 ” ’ 1 ”, ’
q—2+p2(q2 )a, +2p5(q,)>0 A PR (91)a, +2p{(q,)>0 (SOC)
2 1
d.
Solving
1 \Vq
q__lul[‘\/ql-l_ 21J+ﬂ220 (1)
1

2

& +g =1 3)

L_ﬂ{ ‘.12"'\/3—2]'*':“3:0 (2)

9,20
1, >0 (4)
g4, =0

q; 20
My 20 (5)
q3i; =0

From the utility function we see that, at the optimal point, we must have: ¢, ,g, # 0

@), (5): i, = u; =0

Equations (1) and (2) simplify now to:

qi_ﬂl[\/ZJr@]:o (L)

2

qi—u{JZwL@J:o 2.0)

18
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From either equation, it is obvious that: 4, # 0

Hence:

Ja
1.1 1 #0 \/q_1+
((2.11'))#32_2: fq_:ﬁ:‘ﬂ% 4 <4 =4,
1 \/z_l_ 22 2

2 2
We have: A/E =loq = 3/% And ¢, = 3/%

Prepared by: Theo Diasakos

We know that the required conditions of part (b) hold, in this setting, at all values of g.
For the conditions of part (c), you should verify that (SOC) holds indeed at the (LCP)

ai)=[%

6. The consumer’s optimization problem:

max u(x,,x,,x,)=x] +min{x,, x }

Xp,X7,X3
S.t.

DX+ PyXy + pyxy S

x, 20 i=123

The Weierstrass theorem cannot apply in this case because the utility (objective) function

is not continuous on its domain D = R’ m{(xl,xz,x3)e R’ : px, + p,x, + pyx; < I}.

Consequently, the Lagrange theorem does not apply either because the utility function is

not C'.

19



