CHAPTER 5

Statistical Estimation
of Choice Probability Functions

5.1. Introduction

We shall now consider the procedures which can be used to estimate the
unknown parameters in the probability models discussed in chapter. 4.
Two basic techniques are available: (1) least squares regression analysis
and (2) maximum likelihood methods. The form and applicability of
these techniques depend on the structure of the probability functions
whose unknown parameters are to be estimated.

The data available for the calibration will typically be a sample of I
individuals, whom we can index i = 1,...,]. For individual i one
observes a vector s' of individual characteristics, a list of available
alternatives which we can index j = 1, ..., J, and a corresponding list of
vectors x*' of observed attributes of the alternatives. The observed choice
of the individual can conveniently be denoted by defining

1 ifjis chosen,
Ju=

0 ifjis not chosen.

In principle, the number of alternatives J; available to individual i may
vary with the individual, but in many applications it will be constant

across individuals.

5.2. Estimation of the binary-choice model

We shall first discuss estimation of the binary-choice model, since this
case has been thoroughly explored in the literature. We confine our
attention to probability functions that are transformations into the zero—
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102 Urban travel demand

one interval of linear-in-parameters functions, as this is the only case of

real practical interest.
From egs. (4.9) and (4.10), we have for individual i,

P = G — W), (5.1)
and
.- -, V k e Y] D
V= Vi) = 3 BZHx ) = FZ(eF, 59, (52
k=1

where G is a cumulative distribution function mapping points on the
real line into the unit interval, 8’ = (B, ..., Bx) is a vector of unknown
parameters, zif = Z¥x*, s) is a numerical function of x and s, and
2 = Z(x s = (2f, ..., z8) is a vector of these numerical functions.
The sample we have drawn then has the property that f,; is an observation
from a binomial distribution with probability

Py = G(B'Z“ - ﬁlzﬂ)- (5.3)

For the remainder of the discussion of estimation of the binary-choice
model, we use the notation z' = z!' — z%! so that P,; = G(f'z'). We
assume that the available data also have the property that these observa-
tions are statistically independent across individuals. The statistical
question is then how the parameters f can be estimated in a way which
yields results that are “satisfactory” in the sense that the estimates lie
close to the true parameter values. This question has been discussed in
considerable detail in Maxwell (1961), McFadden (1973a), and Cox
(1970); the last two references contain extensive bibliographies.

5.3. The linear probability model

The procedure for estimating the linear probability model i1s the simplest
from a computational point of view. From eq. (4.11), this model can be
written:

0 if pz' <0, (5.4a)
P“ == B’zi lf 0 _S__ B,Z‘ < 1, (54b)
1 if1<pZ (5.4¢)

From fig. 4.4, one sees that (5.4b) corresponds to the interval in the
response curve in which the probability does not take on the extreme
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values zero or one. The conventional estimation procedure is to tacitly
assume that all the data give responses in this interval, and apply
ordinary least squares to the regression equation

fu=PpZ+5 (5.5)
with Ef;; = P,; implying E¢; = 0. The estimates are then

2 _ I-\L ,i,i’-l—l r\L Sir

o e B I i |
It can be shown that these estimates are unbiased: the averages of the
estimates calculated from repeated samples equal the true parameters.
If the explanatory variables satisfy regularity conditions on their varia-
bility, the estimates are consistent: they converge to the true parameters
with probability one as the sample size grows to infinity. One expects
these regularity conditions to be met in cross-section data. Thus the
estimates in eq. (5.6) are quite satisfactory when it is valid to assume that
the response curve is linear and that all the observations lie in the range
where the probabilities are between zero and one. Furthermore, these
estimates can be obtained at low cost using conventional regression
programs.

Two comments should be made about this estimation procedure. First,
the error term ¢; in eq. (5.5) is heteroskedastic, with Ee? = P,(1 — P,)).
This suggests [see Goldberger (1964)] that it would be more efficient to
obtain the ordinary least squares estimates in eq. (5.6), calculate con-
sistent estimates P,; of the choice probabilities, and then carry out a
weighted least squares regression,

[PliPZi]—l/zfli = [li)upzi]_l/zzrﬁ, (5.7)

to obtain final estimates of f. One can show that in asymptotically large
samples this procedure yields the best (i.e., most efficient) estimates
possible. However, in small samples, this second procedure tends to
place excessive weight on extreme observations, leading to more variable
estimates than the one-pass ordinary least squares calculation. The two-
pass procedure also aggravates the sensitivity to specification error of
the linear probability model. For these reasons we do not recommend
the use of the weighting procedure.

Our second comment on ordinary least squares estimates of the linear
probability model concerns the treatment of observations for which

1 (5.6)

-
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B'(z' — z%') lies outside the zero—one interval. Even when the specifi-
cation of the model is valid, this phenomenon is quite likely to occur as
a result of normal sampling effects. Fig. 5.1 illustrates a case with a single
explanatory variable in which a series of observations that might well
be obtained from the true model leads to a predicted “probability” which
lies outside the zero—one interval for values of the explanatory variable

at the extremes of the observed range. This outcome is inconsistent with
the o nrinr rectriction of values of the right-hand side of eq. {S 4] to the

LU @ PIAVIL IV RIVIL Vi VRLIELS UL 830 2252287 2283558 225 2

zero—one interval. We might ignore this inconsistency and continue to
use the estimates obtained in eq. (5.6), setting the predicted P; to the
extreme value zero or one when 'z is less than zero or greater than one,
respectively. However, this may have the result that for some values of

Py
s et S
s o7 _ TP =Gl
/1/
-
! l i !
1 2 3 4 z
Fig. 5.1.
True model
1 ~ for 24
P“ = 1/2 + Z‘/S for lz‘l <4
0 for 22 -4
Sample
i 1 2 3 4 5 6 7 8 9 10 11 12
z! -3 -2 -1 -1 -1 0 0 1 1 1 2 3

S 0 0 1 0 0 1 0 1 1 o 1 1
P,;, 1/8 1/4 38 3/8 38 12 1/2 58 58 5/8 3/4 /8

Unconstrained ordinary least squares estimate

R 1 for 2/ 22%
P, 1/2 + 3716 for |z 1< 2%
0 for Zf < —2%

The linear expression } + 3z/16 exceeds one at the data point z'% = 3.
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the explanatory variables we are required to predict that an alternative
will be chosen with probability one, when in fact we observe that it is
sometimes not chosen. Thus, even though the estimates of § are unbiased,
the predicted probabilities for extreme observed values of the explanatory
variables may be rather badly biased.

As an alternative to this procedure, we might estimate f§ in eq. (5.5)
by least squares, subject to the inequality constraints

0<pz7<l. (5.8)

This estimation procedure can be formulated as a quadratic program-
ming problem and solved by a finite computational routine such as the
Dantzig-Cottle algorithm. The resulting estimates of § will again be
consistent provided the specification is correct, and in small samples they
will tend to be distributed more tightly about the true parameter values
even though they are no longer unbiased (see fig. 5.2). These properties
suggest that the estimates obtained when the inequality constraints are
imposed are preferable to those obtained using the simple ordinary least
squares estimation method. On the other hand, this inequality-con-
strained estimation procedure is more costly, and as we shall see below,
it is also more sensitive to specification error and does not eliminate the
bias in extreme probabilities. Hence in demand analysis of transporta-
tion survey data where specification errors are likély, it seems preferable
to reject the inequality-constrained least squares estimation procedure
in favor of the simple ordinary least squares method.

We now turn to a discussion of the effects of specification errors on
least squares estimation of the linear probability model. The first possi-
bility we consider is that the linear response curve of the form indicated
in fig. 5.1 is valid, but that some observations in our sample are drawn

——— Distribution ofE
from inequality-constrained
ieast squares

Distribution of § from
ordinary least squares

\

3

B
True parameter value

Fig. 5.2. Comparison of distribution of parameter estimates.
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from the ranges of the explanatory variables where the probabilities take
the extreme values. Fig. 5.3 illustrates such a sample and the correspond-
ing fitted linear probability function obtained using the ordinary least
squares estimates of eq. (5.6). In this case, the magnitudes of the param-
eter estimates are substantially biased below their true values. As a result,
the linear probability model will tend to underestimate the elasticity of
response with respect to explanatory variables for individuals in the
intermediate probability range, and overestimate this elasticity in the
extreme probability range. Thus the linear probability model would lead
to forecasts of aggregate demand elasticities which are larger in magni-
tude than the true values in a transportation survey in which a large
proportion of the observations correspond to “clear-cut” best choices
with corresponding extreme probabilities.

A specification error can also occur in the case in which the true
response curve is a smooth ogive, as in fig. 4.1. Fig. 5.4 gives an example

Py o
P1i - By
= 1 I 1 | |
-6 2 z 6z
Fig 5.3.
True model
1 - for 224
P,=21/2+7/8 for |z]<4
0 for 2 -4
Sample
i 1 2 3 4 5 o 7 83 v 10 11 12 13 14 15 16
zz -7 -5 -3 -2 -1 -1 -1 00 1 1 1t 2 3 5 1
fi 0 0 0 0 1 0 o010 1t 1 0 1t 1 1 1

Ordinary least squares estimate

A | ‘ for z'2 528
Pyi=q1/2+92/95 for |z'| <528
0 for 2! £528
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in which the true response function obeys the logistic law. As in the
previous case, the fitted linear probability function underestimates the
effect of a change in the explanatory variable in the intermediate prob-
ability range, overestimates the effect when the probabilities are near the
extreme values, and predicts no effect when the extreme values are
reached and the linear probability function is truncated. Using the linear
probability model, the predicted increase in demand for alternative 1

Fig. 5.4.
True model
Py=1/1 +¢*

Sample
i 101 200 201 -300 301 400 401 -500 501-600 601-700
ot -2 -1 0 1 2 3
no. mes 12 27 50 73 88 95
1 chosen
P, 0.119 0.267 0.5 0.731 0.881 0.953

Ordinary least squares estimation of linear probability approximation to true model.

) 1 for 22=3
P,=21/240.1677 for |Z]| <3
0 for 22 -3

Comparison of true and fitted probabilities

z 0 i 2 3 4

P, 05 0731 0881 0953 0981
P, 05 C6 083 10 10

Comparison of true and fitted effect on aggregate demand for alternative 1 of a one-unit

increase in each X;: true = 93, predicted = 100.
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due to a one unit increase in the explanatory variable is 100 units; the
true model yields an increase of 93 units. Thus, the linear probability
model yields a sever percent overestimate of the true demand effect. The
order of magnitude of this bias has been found to be relatively stable in
limited Monte Carlo studies with data in range typically observed in
transportation surveys. Further, a bias of this magnitude may not be
serious when viewed against the pure statistical variability of the forecast.
Thus, in many cases, the linear probability model may give satisfactory
forecasts of aggregate demand elasticities.

5.4. Estimation of nonlinear response functions

We next consider estimation of the binary choice model in eq. (5.3)
when G is a smooth ogive. The first estimation method we shall discuss
is due to Berkson (1953) and is applicable when there are repeated
observations for each value of the vector of explanatory variables.
Changing notation slightly, let i = 1, ..., I denote the levels (Z', 5} of the
vectors of explanatory variables. Let R; denote the number of observa-
tions at level i, and let r, denote the number of times alternative 1 is
chosen. Then r; is binomially distributed, with E(ry/R;) = P,;. Let g
denote the inverse of the function G; eg., for the logistic function
G(V)=1/(1 + e7Y), g(P) = log[P/(1 — P)].! By a Taylor’s expansion,

T
g(r/R;) = g(P.) + g'(p) [E - Pu], (5.9)
where p; is a value between P,; and r/R;. Provided R,P,; > 1 and
R{1 — P,;) > 1, the second term in eq. (5.9) is to a close approximation
a normally distributed random variable with zero mean. Hence we can
rewrite this equation as

gr/R) = BZ' + &, (5.10)

! The specific form of the inverse function g(P) can be derived by solving the original
function, G(V) = P = 1/(1 + e~ "), for V. Considering the second equality and multiplying
by(l + e V) weobtain P + Pe™V = 1,e"¥ = (1 — P)/P, or ¢' = P/{(1 — P). Taking logs
of both sides, we derive the result ¥ = log[P/(1 — P)] = g(P). For the arctan model,

1 1 ) 1 .
G(V) = 3 + ;t-tan’ ¥ has the inverse V = tan [n(P - 5)]’ while for the probit model,

g(P) is the inverse cumulative standard normal curve.
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where ¢; is a normally distributed error term, and apply ordinary least
squares to estimate §. This procedure yields estimates that converge with
probability one to the true values as the number of repetitions for each
level i grows to infinity.

The case of the model (5.10) most commonly treated in the literature
is the logistic distribution, yielding

r

logr .| = Bz + & (5.11)
|_R:' - ’iJ

Several modifications can be made in eq. (5.11) to improve the accuracy
of the estimates. Cox (1970) shows that a slightly improved normal
approximation and adjustment for heteroskedasticity can be attained by
applying ordinary least squares to the model

r+ 172 .
log| ——————|=p2Z'+¢; 5.12

g[R.--r,-H/z] e 12
using the resulting estimator J to calculate consistent estimates of the
probabilities

P, = 1/(1 + 75,
and then applying least squares to the model

r; + 1/2 i
w; log[m] = f'z'w; + 8,-}, (5.13)

w; = \/[Ripi(l - Pi)j'z

This model is known to give good estimates of the parameters, provided
that a sufficient number of repetitions at each i value can be obtained;
this is even true for samples of moderate size. [See Berkson (1955),
Gart (1967), and Gilbert (1968).] However, application of the method to
survey data involves two serious difficulties. First, the number of cells
necessary to describe the possible configurations of explanatory variables

where

2 It is possible to make a “one-pass” approximation to this procedure by applying
least squares to eq. (5.13) with the empirical weights,
w; = J[R{ri + DR, — 1; + DAR; + IMR; + 2)].
However, as Cox (1970, p. 41) points out, the factors “ + 1” in eq. (5.13) and “+ 17 in the
weight above may require modification to improve the small sample characteristics of
the estimator in this case.
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tends to increase with the power of the number of variables. For example,
a model with K independent binary variables requires 2K cells. Hence
even for moderate K, the survey sample sizes necessary to obtain a few
repetitions in every cell may be extremely large. This will be a particularly
acute problem in transportation surveys, where many cells will have
probabilities P,; near zero or one, making it necessary to obtain a large
number of repetitions to satisfy the conditions R,P,; > 1 and
R{(l — P) > 1.

The second difficulty in applying the method to survey data is that
many explanatory variables are continuous, making a dichotomization
necessary 1n order to define cells. Hence the Berkson regression, using
cell means as values of the explanatory series, introduces an errors-in-
variables effect which in general causes the magnitude of the estimates
to be biased downward. In order to make the Berkson procedure
statistically consistent when this problem is present, it is necessary to
redefine the cells as the sample size increases so that the number of
repetitions in every cell increases and the range of variation within each
cell decreases. We report below on a Monte Carlo experiment for a very
simple model with one explanatory variable which indicates that the
Berkson procedure may provide desirable estimates even in the presence
of the errors-in-variables effect. This suggests that the Berkson method
should be used whenever it is feasible .However, despite its statistical
advantages, this procedure is considerably less useful in analyzing survey
data than it is in a laboratory setting because of the difficulty of defining
cells for a large number of continuous explanatory variables.

The last estimation procedure we shall discuss is the method of max-
imum likelihood. This method does not require repetitions, and it can
be adapted to a variety of estimation problems. Its primary disadvantage
is that it involves much more costly computation than the preceding
methods because the estimates must be obtained by numerical methods.
Its primary advantage is that the estimates are consistent, and are the
best possible estimates in very large samples. Limited Monte Carlo
studies and analytic solutions [McFadden (1973a)] suggest that the
maximum likelihood estimators are satisfactory in small samples, though
not as desirable as the Berkson estimator when the latter procedure is
feasible.

The maximum likelihood procedure could be applied to the prob-
ability function P; = G(f'Z) for any distribution function G; however,
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we shall consider only the logit case log [P, /(1 — P;)] = 'z We again
let i =1,...,] index individual observations. Since f; is binomially
distributed, we can write the log of the probability of observing a given

sample as

[fiilog Py; + (1 = f1)log(l — P,)]

h
i

DM~ i~

i
log(1 + exp (B2)) + ; fubz. (5.14)

1

This is termed the log likelthood function. Now suppose § is unknown.
The method of maximum likelihood argues that the calculated prob-
ability of observing the given sample should be highest when the un-
known § is near the true value, and hence that a satisfactory estimate of
the parameters is the maximand of the log likelihood function, or, in
other words, a value B which maximizes L.

The maximum can be found in the ordinary way by differentiating
eq. (5.14) with respect to B and setting the derivatives equal to zero. The
solution of the resulting set of equations yields the maximum likelihood
estimates B for . The first-order condition for a maximum is

I
JoL/op = Z (fis — Pz = 0. (5.15)
i=1
The second-order condition for a maximum is
o°L I .
= - ZIP,'].—P,'Z“<O. 5.16
3B0F .';1 1 1) . | (5.16)

The right hand side of eq. (5.16) is the negative of 2 weighted moment
matrix. Hence provided that the data are not multicollinear, the matrix
of second partial derivatives of L is negative definite, implying that L
is strictly concave, the maximum likelihood estimate is unique, and the
second order condition holds.

The mathematical properties of the likelihood function are quite useful
in obtaining numerical solutions to the maximization problem. Provided
that the explanatory variables are not multicollinear, the existence of
the maximum is virtually certain in empirical samples of more than ten
or twenty observations. Further, it is possible to use a finite quadratic
programming algorithm, described in McFadden (1973a), to test for
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existence. The concavity of the log likelihood function allows the use of
rapid iterative search procedures which are guaranteed to converge to
the maximum. The empirical estimates given in chapter 7 were obtained
using a mixed Newton-Raphson variable metric routine with a linear
search method due to Davidon.? A general consequence of the theory is
that in asymptotically large samples the covariance matrix of the
maximum likelihood estimates, weighted by the square root of the sample
size, equals the inverse of the negative of the expected value of J0*L/opag,
evaluated at the true parameter vector. But from eq. (5.16),

2 [

—%ﬁl—' = iz:‘l 2P {1 — Pz, (5.17)
an expression ordinarily computed in the iterative search procedure.
Evaluation of the inverse of the expression in eq. (5.17) at the maximum
likelihood estimate provides a consistent estimator of the covariance
matrix of the maximum likelihcod estimator.

5.5. A Monte Carlo comparison of nonlinear estimators

We shall next describe a small Monte Carlo experiment which compares
the maximum likelihood, Berkson, and linear probability model esti-
mators in the case of the simplest possible binary logit model,

Py
- P

where the scalars z} are drawn from a (continuous) logistic distribution.
Table 5.1 gives selected results for the parameter value §;, = 1, with the
z distributed with mean zero and a semi-interquartile range of 1.10 in
case A and 4.39 in case B. Case A yields selection probabilities between
0.2 and 0.8 for 88 percent of the observed values of z,, while case B yields
selection probabilities in this range for 33 percent of the observed values
of z,. For choice of mode, transportation surveys tend to yield a large
number of “clear-cut” choices with extreme selection probabilities, and
thus this case more closely resembles case B.

The Berkson estimator calculated here ranks the values of the inde-
pendent variable, and then assigns observations to cells on the basis of

3 This program was developed at the University of California at Berkeley by McFadden,
Varian and Wills.

log = Bz}, (5.18)
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rank. The estimator is obtained by applying the least squares procedure
of eq. (5.12) using cell means for the independent variable. If the linear
probability model is normalized so that the parameter is comparabie to
the logit model parameter, it is just the Berkson estimator for cell
size one.

Provided that systematic bias and standard errors are weighed
equally, the mean square error is the best criterion for comparing the
Berkson, maximum likelihood, and linear probability estimators. The
mean square error is equal to the expected value of the squared deviation
of the estimate from the true parameter value, and in the Monte Carlo
study it is estimated by the average of this squared deviation over a
series of randomly generated samples.

The statistical theory of the Berkson estimator suggests that in the
absence of the effects of grouping, the expected mean square error of the
estimator is minimized by taking maximum possible cell sizes and a
small number of cells. When the continuous independent variable is
dichotomized, one expects the optimal cell size to depend on the size of

Table 5.1

Small sample properties of the maximum likelihood estimator (MLE),
Berkson estimator (BE), and linear probability model estimator ( LPE).

Case A
Bias Mean square error
Sample Berkson
size MLE BE LPE MLE BE LPE cell size
30 0.008 —-0.243 —0.565 0.127 0.111 0.332 3
60 0.010 -0.103 —0.549 0.069 0.056 0.461 5
120 -0.062 —0.135 -0.550 0.071 0.079 0.313 6
240 0.096 —0.001 —0.508 0.027 0.011 0.25% 6
Case B
30 0.098 -0.319 -0.742 0.181 0.138 0.551 10
60 —0.050 —0.295 -0.742 0.045 0.100 0.551 15
120 -0.005 —0.276 -0.776 0.034 0.083 0.603 20
240 —0.062 -0.214 —-0.774 0.014 0.052 0.599 40

Note: The independent variable has a logistic distribution with mean zero and semi-
interquartile range equal to 1.10 in case A and 4.39 in case B. The true parameter value
is 1.0. Twenty Monte Carlo trials are calculated for each sample size. The Berkson
estimator is reported for the cell size giving the minimum mean square error.



114 Urban travel demand

the sample and the variation of the independent variable. Table 5.2
compares the mean square errors of Berkson estimators with various
cell sizes; the results for the cell size minimizing mean square error are
those given in table 5.1.

We first consider the results of case A in table 5.1, where the inde-
pendent variable results in selection probabilities near zero or one for .
only a small percentage of cases. The tabled figures represent the average
of twenty Monte Carlo trials for each sample size, and because they are
themselves subject to statistical variation, one should avoid attempting
to draw more than general qualitative conclusions from the results.
However, it is clear that the linear probability model estimator (LPE)
has a large systematic bias and mean square error. While the maximum
likelihood estimator (MLE) and Berkson estimator (BE) have compa-
rable mean square errors at each sample size, the BE has a somewhat
larger systematic bias, as a result of which it underestimates the magni-
tude of the parameter in every case. This is the expected outcome of the
introduction of an errors in variables effect due to grouping, and it
suggests that improvement in the BE might be obtained by introducing
a correction for the grouping error. The statistical properties of the BE
and the MLE are comparable; however, the BE is preferable because it
is easier to calculate.

We next consider case B in table 5.1, where the independent variable
yields many selection probabilities near zero or one. Here the effects of
grouping on the BE are much more severe than in the previous case,
and comparison of the mean square errors indicates that the MLE is
clearly superior for sample sizes above 60. However, as before, the MLE
and the BE are different because the former has a somewhat higher
variance while the latter has a substantial systematic bias, and it is again
possible that a correction for grouping would make the BE comparable
to the MLE.

In both cases A and B the LPE is inferior to the MLE and the BE. Its
performance is relatively worse, however, where there are a high propor-
tion of extreme probabilities.

The results of varying the cell size in computing the Berkson estimator
given in table 5.2 show that increasing the cell size from one to more
than one results in a substantial improvement, while beyond this range
mean square error is a relatively flat function of cell size. Comparison
of cases A and B indicates that a high proportion of extreme selection
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Table 5.2

Variation of the mean square error of the Berkson estimator
with changing cell size.

Case A: Semi-interquartile range of z' = 1.10

Sample Number Cell Mean square

size of cells size error
30 30 1 0.33
15 2 0.16

10 3 0.1

6 5 0.11

5 6 0.13

3 10 0.17

60 60 1 0.30
30 2 0.13

20 3 0.08

15 4 0.07

12 5 0.06

10 6 0.08

6 10 0.10

120 120 1 0.31
60 2 0.14

40 3 0.09

30 4 0.07

24 5 0.08

20 6 0.08

15 8 0.08

12 10 0.08

10 12 0.10

6 20 0.11

240 240 1 0.26
120 2 0.08

80 3 0.03

60 4 0.02

48 5 0.01

40 6 0.01

30 8 0.01

24 10 0.02

20 12 0.02

12 20 0.02

6 40 0.02

4 60 0.02
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Table 5.2 (continued)

Case B: Semi-interquartile range of z' = 4.39

Sample Number Cell Mean square

size of cells size error
30 30 1 0.55
15 2 0.38

10 3 0.28

6 5 0.19

5 6 0.17

3 10 0.14

60 60 1 0.55
15 4 0.22

10 6 0.16

6 10 0.10

5 12 0.10

4 15 0.11

3 20 0.08

120 120 1 0.60
30 4 0.27

20 6 0.20

12 10 0.13

10 12 0.11

8 15 0.10

6 20 0.08

5 24 0.09

4 30 0.10

3 40 0.12

240 240 1 0.60
60 4 0.27

40 6 0.19

24 10 0.12

20 12 0.11

16 15 0.08

12 20 0.07

10 24 0.07

8 30 0.06

6 40 0.05

5 48 0.07

4 60 0.07

3 80 0.09
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probabilities in the sample require larger cell sizes in order to provide
satisfactory estimates of cell relative frequencies, and the use of these
larger cell sizes introduces a larger bias due to grouping.

5.6. Estimation of the multiple-choice model

We will now consider estimation of the multiple-choice model with
i =1, ...,1 observations and J; alternatives at observation i. We start
from the “strict utility” probability model described in eqs. (4.39) and
(4.40), and examine multiple-choice generalizations of the linear prob-
ability model and the logit model. These models can both be derived
from eq. (4.39) by appropriate specification of the functional form of the
“representative” component of utility V(x, s). To simplify notation, we
shall at this point assume that the attributes determined by x and s can
be summarized in a vector of numerical functions z = Z(x,s) = (Z Yx, s),
..., ZX(x, s)). Further, we suppress any alternative-specific parameters,
for example, we write V(x', s) = f'Z(x’, s) rather than V(x, s) = B.Z(x', s).
This does not imply any restriction on the generality of the model since
alternative-specific effects can be introduced by defining each variable
to be zero on all except one alternative.

We give several examples to illustrate the generality of this formula-
tion, and to indicate how “ranked” or “unranked” alternatives are
treated in the model.

The simplest example is the case in which the number of alternatives
J, available for each individual i = L,...,I is constant and the alter-
natives of all the individuals are ranked (for example, j = 1 is always
“no-trip”, alternative j = 2 is “auto trip”, alternative j = J; = 3 is “bus
trip”). Consider an explanatory variable z§, where k indexes the variable,
j indexes the alternative, and i indexes the individual. In this model,
z{' may be a “generic” variable, such as “trip cost”, which will be zero
for no-trip, the auto out-of-pocket and parking charges for an auto trip,
and the bus fare for a bus trip. “Trip cost deflated by wage rate”, a
variable describing the interaction between socioeconomic character-
istics of the individual and attributes of the alternative, would be another
such generic variable. Alternately, z{’ may be a “mode-specific” variable,
such as a variable which is one for the auto trip alternative and zero
otherwise and indicates a “pure auto demand preference” shift effect.
A variable which equals auto trip cost for the auto trip alternative and
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is zero otherwise and which indicates a “mode-specific” demand curve
is another example of a variable of this kind. It is essential to have ranked
alternatives in order to include mode-specific variables. For example,
a variable which is one for the first mode and zero otherwise is meaning-
less unless the first mode had some specific identification, such as the
“no-trip” alternative. Furthermore, as we pointed out earlier, it is
possible to predict the effect of the introduction of new modes only if
all the variables in the model are generic; otherwise the new mode will
also have mode-specific effects which cannot be forecast without direct
observation on choices including this mode. Thus it is desirable to
confine the analysis to generic variables whenever possible, in order to
make the model useful for policy purposes. Whether mode-specific
effects are present is an empirical question. Tests of the significance of
mode-specific variables can be carried out in the case of ranked aiter-
natives, and if these effects are not significant, an empirical basis is
established for the use of a generic-variables model.

The second example we consider is the case in which the alternatives
available to each individual are ranked and the number of alternatives
may vary from individual to individual. For example, the alternatives
might be “no-trip” (j = 1), “auto-trip” (j = 2), “local bus trip” (j = 3),
and “express-bus trip” (j = 4), ranked always in this order, and the
fourth alternative might not be available to all the individuals sampled.
In this model both generic and mode-specific variables can be given a
meaningful interpretation. For example, a variable which is one for mode
4 and zero otherwise could be used to forecast an “express-bus” pure
shift effect. This effect could then be included in forecasting the effects
of an extension of express-bus service to individuals to whom it is not
currently available. In a similar fashion, one could pool samples of indivi-
duals who have the “no-trip” option with those who do not.

The last example we consider is the case in which the alternatives
available to each individual are unranked. In this case there may be either
an equal or an unequal number of alternatives for each individual, and
there is no natural correspondence between the “first” alternatives of
different individuals. For example, the alternatives may be different
destinations of shopping trips, these alternatives being described by gen-
eric variables such as time and cost of trip to the destination, attributes
of the destination such as flexibility for multipurpose shopping trips,
ease of parking, etc. Individuals sampled from dispersed geographical
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areas will face different lists of alternative shopping areas, and there will
normally be no meaningful way to “pair” alternatives from one indivi-
dual to another. Hence in this model it is not meaningful to introduce
“mode-specific” variables, as they would not reflect real behavior, and
the model must be of the generic-variable form. However, there can be
mixed models in which, for example, the first two alternatives are ranked,
(for example alternative j = 1 is always “no-trip” and alternative j = 2
is always “central business district trip”), while the rernaining alternatives
represent local shopping trips and are unranked. In such a mixed model,
the ranked alternatives may have “mode-specific” variables, but the un-
ranked alternatives can depend only on generic variables. For example,
in the illustration above, the explanatory variables could be a “no-trip”
shift effect which is one for this alternative and zero otherwise, a “CBD”
shift effect, and generic variables measuring inclusive cost of trip and
attractiveness of destination.

We will now discuss estimation of multiple-choice selection probabil-
ities by means of the linear probability model and the logit model.

A multiple-choice linear probability model can be obtained as in
eqs. (4.65) and (4.66), by setting V(z') = log f'z'. The sum over the alter-
natives for each individual of the resulting linear probability model must
equal one. For this condition to hold either z# for one alternative must
be defined as the necessary residual, or all the z/' must be normalized
by a weight w;, However, both these procedures imply that the “re-
presentative” utility of one alternative depends on the attributes of all
available alternatives, and this is contrary to the assumptions about the
independence of tastes and opportunities that are usually made. Further-
more, the weighting procedure in the second case destroys the simple
linear regression structure, and imposition of inequality constraints
imposes an additional computational nonlinearity. In view of these
drawbacks and the additional disadvantage that the linear model is
sensitive to specification errors, we conclude that the multinomial linear
probability model formulated in egs. (4.65) and (4.66) does not yield a
practical estimator with satisfactory statistical properties. However, as
noted below, under some conditions it is possible to use a linear approx-
imation to a nonlinear model to obtain relatively satisfactory parameter

estimates in small samples.
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5.7. Multinomial logit analysis
A multiple-choice logit model is obtained in eq. (4.68) by taking V(x, s)

to have the linear-in-parameters form V(x!, s') = f'z'. Then the selection
probabilities satisfy
log (Pji/Pu) = ﬂ’(zﬁ -z, (5.19)
1
P, = (5.20)

Ji

exp(B (2 — z7)

Ms.

k
When there are repetitions at each level of the vector of explanatory
variables, eq. (5.19) can be adapted to a Berkson-type analysis, with §
estimated by least squares applied to the equation

ri+ 172 i .
1 L =B - )+ ¢y 5.21
og[,” — /2] B - 2+, (521

fori=1,....1 and j = 2,...,J, and where r; is the number of times
alternative j is chosen at level i. Efficient estimation requires a two-pass
least squares procedure which takes account of heteroskedasticity and
covariance of the “within-i” dependent variables. This procedure is
discussed in Theil (1970), and the question of the appropriate choice of
weights is discussed in McFadden (1973a). The advantages and dis-
advantages of this procedure are the same as those that were mentioned
in the discussion of the binary choice case.

When individual decisions are observed and repetitions are not avail-
able, the multiple-choice logit model can be estimated by the maximum
likelihood procedure. The log likelihood function in this case is given by

L=- i i Jii log[ i exp(f(* — zf‘),)], (5.22)

i=1 J=l k=

where, as before, f;; = 1 if alternative j is chosen and f;; = 0 otherwise.
McFadden (1973a) has shown that this function is concave in the para-
meter vector f, implying that there is a unique maximum likelihood
estimator whenever a maximum exists. As in the binary choice case, the -
derivatives of the log likelihood function are readily computed, with
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I J;
oL/op = Z [ U — Pj,-)zf‘:I, (5.23)
i=1 | j=1
and ’
I Ji . . . ..
O*LjoBopf = — Z Z (2 - ZY)P(z" — zY, (5.24)
i=1 j=1
WIICIC . | .
Ei - Z Zﬁpji, (525)
i=1
and
¢ o Ji
P, = ____._J‘_e"p(ﬁ 2)_ (5.26)
,;1 exp(f'z")

Provided the data 2z are not multicollinear, they will normally satisfy
a full-rank, or non-degeneracy, condition which guarantees that the
Hessian matrix in eq. (5.24) is negative definite. Then L is strictly concave
and any vector § satisfying dL/8f = 0 is a unique maximizer for the
likelihood function; hence there is a unique maximum likelihood
estimator. McFadden (1973a) has given conditions for the existence of
the maximum likelihood estimator; he has also given a finite algorithm
to test for existence and a demonstration that existence is virtually
certain in samples of reasonable size. The maximization of L, which is
equivalent to the solution of the system of equations

i f (fii — Pp2" =0, (5.27)

i=1 j=1

can be carried out by a variety of standard iterative procedures such as
the gradient, Newton—Raphson, Fletcher-Powell, and Davidon methods.
The procedure used in this study is a mixed Newton-Raphson variable
‘metric routine with a linear search method due to Davidon.*

* A general purpose. statistical program for analysis of qualitative data, QUAIL (for
quantitative, intermittent, and limited dependent variable statistical analysis program),
written by Wills, Glanville, and McFadden of the University of California, Berkeley,
is available for this analysis. The program also allows transgeneration and storage of
data, and selection of variables, alternatives, and cases.
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A typical Newton-Raphson iteration, starting from a candidate para-
meter vector B and associated probabilities Pj; from eq. (5.26), has the
form

I Ji _ . .-t
B = B + [Zl -Zl (zﬁ —_ "i)Pﬁ(le _ Ex)l]

r l \I

rL L‘ZJ .n FJJ

i=1 j=1

—
W
()
o0

A

Note that B can be interpreted as the ordinary least squares estimator
in the linear model

\/(Pji) ) (fji - Pji) = \/(Pji) : ,B’(Z'" -7+ Ejiy (5.29)

and that for a fixed initial f, such as B = 0, eq. (5.29) can be interpreted
as a linear probability model. The estimates obtained from eq. (5.29) by
a single Newton—Raphson iteration are not consistent. However, we
know from experience that rough estimates obtained in this way usually
agree in sign and magnitude with the full maximum likelihood estimates.
This is particularly likely when the frequency of extreme selection prob-
abilities in the sample is low, and for small sarnples the statistical
properties of these estimates are often as good as those of the maximum
likelthood estimator.

5.8. Measures of goodness of fit

A goodness of fit measure is a summary statistic indicating the accuracy
with which a model approximates the observed data. In the case of
qualitative response models, accuracy may be judged either in terms of
the fit between calculated probabilities and observed response frequen-
cies, or in terms of the ability of the model to forecast observed responses.

Measures of the first type are based on the observed frequencies f;;
and corresponding probabilities Pj; calculated from the estimated
model. By analogy to the measure of fit used in regression analysis, we
could define a sum of squared residuals Y 7-, Y75, (f;i — P;)* Because
the terms entering this sum are heteroskedastic (i.e., have differing var-
iances), the analogy with regression analysis suggests a correction to
achieve heteroskedasticity. Define a sum of squared adjusted residuals,
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I Ji
SB)= Y Y (i — PiPY/PE (5.30)

i=1 j=1
where B is the parameter vector at which the calculated probabilities

P;{p) are being computed and P} are the true selection probabilities.
McFadden (1973a) has shown that this measure has the same statistical

re relative frequencies with

MW ALWAWAS YYaAuad

properties in large samples (where the f; are relative

repetitions) as does the sum of squared residuals measure in regression
analysis. This suggests as a goodness of fit measure the analogue of the
multiple correlation coefficient,

R?* =1 — S(B)/S(B), (5.31)

where fis the maximum likelihood estimator, f is zero or is zero except
for coefficients of alternative dummies, and P} is replaced by its con-
sistent estimator P j,{B). Values of this index are roughly comparable to
multiple correlation coefficients obtained in ordinary least squares.
However, the index lacks desirable statistical properties in small samples,
and is very sensitive to model specification error at extreme prob-
abilities, these specification errors biasing the index toward one.

A much more satisfactory measure of goodness of fit can be obtained
from the log likelihood function,

I J;
L(p) = _Zl 42} fiilog Pi(B). (5.32)

i=1 j=
A term f}; log P;{p) is near zero if alternative j is chosen and the calcu-
lated probability Pj; of this outcome is near one, and is large negative
if the probability of this outcome is near zero. The log hkelihood
function has a convenient statistical distribution in large samples, and
can be given an intuitive interpretation using information theory; e.g.,
Theil (1969, 1970). We can transform the log likelihood function into an

index analogous to the multiple correlation coefficient by defining

p* =1— LP/LP), (5.33)

where f is the maximum likelihood estimator and f is zero or is zero
except for coefficients of alternative dummies. Suppose f contains k = 0
parameters and § contains k parameters, including the parameters that
appear in B. Then, in large samples, [k/(k — k)] [p*/(1 — p?)] is dis-
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tributed approximately F(k — k, k); this distribution can be used to test
the hypothesis f = B. The p? and R? indices both vary in the unit
interval (except when some coefficients in 8 are excluded from f, in
which case a poor fit may yield p? or R? negative); the graph below
summarizes schematically a relatively stable empirical relationship
between the indices.
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In terms of consistency and statistical properties, the p? index appears
to provide a practical and theoretically sound index of goodness of fit.

The second type of measure of fit is based on the accuracy of the
model in forecasting observed responses. In order to define these mea-
sures, we must first discuss briefly the problem of classification and
forecasting. Suppose the selection probabilities P; are known. Assume
that if an individual chooses an alternative j and any other alternative
is forecast, a cost c; of misclassification is incurred.® The forecasting rule
is a function 6; = ¢;{Py,, ..., P;,;) with 6; = 1 if choice j is forecast and
6; = 0 otherwise. Noting that the expression 1 — 6;{P,;, ..., P;,;) is
zero if j is forecast and one otherwise, the total cost of misclassification is

c=%

i=1 j=

Ji

1 fic;(1 — ). (5.34)
Then, the expected cost of misclassification,

i Ji
i=1 j=1
* This formulation implicitly ranks the alternatives; one could more generally specify
a cost c; of forecasting choice k for individual i when the actual choice is j. This requires
a more cumbersome analysis, but the conclusions are similar.
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is minimized if the forecasting rule selects an alternative j maxnmlzmg
Pjc;; ie, 6; = 1 implies ¢;Pj; 2 Py We adopt this forecasting rule.®

A vanety of indices of goodness of fit could be based on the cost
statistic C valued at the optimal decision rule and using calculated values
of the P; from maximum likelihood estimation or a similar statistical
procedure For example, one might take as an index the reduction in
cost as a proportion of the cost of a random classification. However, we
shall confine our attention to the case of all ¢; = 1, where cost is prop-
portional to the total number of individuals m1sclassmﬁed, and the case
ofc; =1 /P where P = (1/I) Z’ -1 Pj;is the sample average probability
of choosmg j. In the first of these cases, ¢; = 1, an appealing index of
goodness of fit is the proportion of successful forecasts 1 — C/I. We
note that the use of maximum likelihood estimators in the decision rule
will tend to maximize this proportion only in asymptotically large
samples. Hence, in small samples the values of this percentage may be
somewhat erratic. Manski (1974) has developed an alternative family of
estimators which maximize the proportion of successful forecasts and
have desirable statistical properties. '

An implication of the optimal forecasting rule for ¢; =1 is that
alternatives which have a low average probability F; w1ll be forecast
relatively infrequently; intuitively this is because the numbers of mis-
classifications resulting from directing forecasts away from low prob-
ability alternatives is low. Consequently, the individual forecasting rule
will tend to underestimate the frequency of aggregate choice of less-used
alternatives. A second measure which corrects this bias is based on the
weights ¢; = l/P Since ¢;P;; = ,,/P is on average equal for various j,
the aggregate frequencies of forecasts resulting from the optimal decision
rule will tend to cluster around the observed aggregate frequencies, as
desired. A weighted proportion of successful forecasts,

S 3 Sl = 6/P,
A=1-— '1 L=3 (5.36)

ij,(l 1/J)/

should provide a satlsfactory goodness of fit measure in this case.

IIM-—. I

¢ Anderson (1958) shows that this decision rule has optimal statistical properties.



