Ecom 240B Spring 2009 Problem Set 1

This problem set is due in class on Monday, April 6th

1. Prove consistency of the least absolute deviation estimator:

$$\hat{\theta} = \operatorname{argmin} \sum_{i=1}^{n} |y_i - x'_i \theta|$$

Assume that for $\epsilon_i = y_i - x'_i \theta_0$. $P(\epsilon_i \le 0 | x_i) = \frac{1}{2}$ for all x_i . $Ef_{\epsilon}(0|x_i) x_i x'_i$ is nonsingular. Also specify the regularity conditions you need to show consistency.

2. The density of X is given by

$$f(x) = \begin{cases} 3/(4\theta) & \text{for } 0 \le x \le \theta, \\ 1/(4\theta) & \text{for } \theta < x \le 2\theta, \\ 0 & \text{otherwise.} \end{cases}$$

Assuming that a sample of size 4 from this distribution yielded observations 1, 2.5, 3.5 and 4, calculate the maximum likelihood estimator of θ .

- 3. Suppose $X \sim N(\mu, 1)$ and $Y \sim N(2\mu, 1)$, independent of each other. Obtain the maximum likelihood estimator of μ based on N_x i.i.d. observations on X and N_y i.i.d. observations on Y and show that it is the best unbiased estimator in the sense of having the smallest variance.
- 4. Let $\{X_i\}, i = 1, 2, ..., n$ be a random sample on $N(\mu, \mu)$, where we assume $\mu > 0$.
 - (a) Obtain the maximum likelihood estimator of μ and prove its consistency.
 - (b) Also obtain its asymptotic variance and compare it with the variance of the sample mean (If you think one of them is larger than the other, prove it explicitly).
- 5. Suppose that X_1, \ldots, X_n are independent and that it is known that $(X_i)^{\lambda} 10$ has a standard normal distribution, $i = 1, \ldots, n$. This is called the *Box-Cox transformation*.
 - Derive the second-round estimator $\hat{\lambda}_2$ of the Newton-Raphson iteration, starting from an initial guess that $\hat{\lambda}_1 = 1$.
 - For the following data, compute λ_2 : 96, 125, 146, 76, 114, 69, 130, 119, 85, 106