Ecom 240B Spring 2009

Problem Set 2

This problem set is due in class on Monday, April 13th

1. Let $\left\{X_{n}\right\}$ be a sequence of random variables. Assume that

$$
\sqrt{n} X_{n} \xrightarrow{d} N(0,1)
$$

(a) Find the asymptotic distribution of $\sqrt{n}\left(e^{X_{n}}-\operatorname{plim} e^{X_{n}}\right)$ and $\sqrt{n}\left(X_{n}^{2}-\operatorname{plim} X_{n}^{2}\right)$.
(b) Find the asymptotic distribution of $e^{\sqrt{n} X_{n}}$ and $\sqrt{n} X_{n}^{2}$.
2. Suppose that X_{1}, \ldots, X_{n} are independent and that it is known that $\left(X_{i}\right)^{\lambda}-10$ has a standard normal distribution, $i=1, \ldots, n$. This is called the Box-Cox transformation.

- Derive the second-round estimator $\hat{\lambda}_{2}$ of the Newton-Raphson iteration, starting from an initial guess that $\hat{\lambda}_{1}=1$.
- For the following data, compute $\hat{\lambda}_{2}$:
$96,125,146,76,114,69,130,119,85,106$
- Write a computer program to iterate to convergence or to 100 times.

3. Consider a discrete random variable N having probability mass function

$$
p_{N}\left(n ; \theta^{0}\right)=\operatorname{Prob}\left(N=n ; \theta^{0}\right)=\frac{-\left(\theta^{0}\right)^{n}}{n \log \left(1-\theta^{0}\right)} \quad n=1,2, \ldots, 0<\theta^{0}<1
$$

which is often referred to as the logarithmic series distribution for reasons that will become clear later in the problem.
(a) Prove that

$$
\sum_{n=1}^{\infty} p_{N}\left(n ; \theta^{0}\right)=1
$$

(Hint: consider the infinite order taylor series expansion of $\log (1+x)$ and substitute in $x=-\theta^{0}$.)
(b) Find the expected value of $N, E(N)$. (Hint: $\sum_{n=1}^{\infty} \rho^{n}=\frac{\rho}{1-\rho}$.)
(c) Find the variance of $N, V(N)$. (Hint: remember that the derivative of a sum is the sum of the derivatives of each of the sum's parts.)
(d) Define the maximum-likelihood estimator $\hat{\theta}_{\text {mle }}$ of θ^{0}.
(e) After considerable effort, a researcher has obtained a random sample of one thousand measurements on N. These data are summarized in Table 1.

Table 1
Observed Frequency Distribution of \mathbf{N}

\mathbf{N}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Frequency	700	205	50	26	10	6	1	1	1

(f) Write a matlab program that implements Newton's method to calculate the maximum-likelihood estimate of θ^{0} using the above data.
(g) Write another matlab program to implement the bisection method to calculate the maximum likelihood estimate of θ^{0} using the above data. An introduction to the bisection method for solving a nonlinear equation of one variable can be found at:
http://www.library.cornell.edu/nr/bookcpdf/c9-1.pdf

