Econ 240B Spring 2009 Problem Set 3

This problem set is due in class on Monday April 20th, 2009

1. Suppose that there are two parameter tests given by smooth functions $g : \mathbb{R}^p \mapsto \mathbb{R}^k$ and $r : \mathbb{R}^p \mapsto \mathbb{R}^k$ (i.e. the sets of values of g and r have the same dimensionality). Suppose also that there exists a smooth and invertible function $\varphi(\cdot)$ such that $r(\theta) = \varphi(g(\theta))$. The tests are defined by the null hypothesis regarding the parameter restrictions (with a standard composite alternative):

$$H_0^1$$
 : $g(\theta) = \gamma_0$,

and

$$H_0^2$$
 : $r(\theta) = \varphi(\gamma_0)$.

We assume that the distribution of the data satisfies the standard regularity conditions and use the likelihood ratio, the Wald and the score test statistics to test H_0^1 and H_0^2 . For each choice of the test statistic, find all smooth functions $\varphi(\cdot)$ such that the test power for H_0^1 and H_0^2 is exactly the same.

2. Consider a general binary response model with observable variables d and x such that

$$\Pr\left(d=1 \mid x\right) = F\left(x'\beta_0\right).$$

Suppose that

- There is an i.i.d. sample (d_t, x_t) for t = 1, ..., T where x has a continuous density $f_X(\cdot)$ such that $f_X(x) > 0$ for all $x \in \mathbb{R}^p$
- $F(\cdot)$ is a c.d.f. of some continuous random variable with the median equal to zero, and $F(z) = \frac{1}{2}$ iff z = 0.
- Parameter space is a unit sphere $\mathcal{B} = \left\{ b \mid b \in \mathbb{R}^p, \ b'b = 1 \right\}$

Consider the following objective function:

$$\widehat{Q}_{T}(\beta) = \frac{1}{T} \sum_{t=1}^{T} \left[d_{t} \mathbf{1} \left\{ x_{t}' \beta \ge 0 \right\} + (1 - d_{t}) \mathbf{1} \left\{ x_{t}' \beta < 0 \right\} \right],$$

where $\mathbf{1}\{\cdot\}$ is an indicator function. Let \widehat{B}_T be the set of maximizers of the chosen objective function, that is

$$\widehat{B}_{T} = \left\{ b \left| \widehat{Q}_{T} \left(b \right) \geq \widehat{Q}_{T} \left(b' \right), \, b' \neq b, \, b, b' \in \mathcal{B} \right\} \right\}$$

Prove that for any chosen sequence of points in the set of maximizers of the sample objective $\left\{\widehat{\beta}_T \in \widehat{B}_T\right\}_{T=1}^{\infty}$

$$\widehat{\beta}_T \xrightarrow{p} \beta_0$$
, as $T \to \infty$.

This means that all points in \widehat{B}_T are consistent estimates for β_0 .