Econ 240B Spring 2009 Problem Set 4

This problem set is due in class on Monday May 4th, 2009

1. Derive the Multinomial Logit Model. Define the latent utility of choosing alternative m, m = 1, ..., M, to be:

$$y_{im}^* = x_i'\beta_m + \epsilon_{im}$$

where conditional on $x_{im}, m = 1, ..., M$, $\epsilon_{im}, m = 1, ..., M$ are independently and identically distributed with type I extreme value distribution function: $F(\epsilon) = \exp(-\exp(-\epsilon))$. Individual *i* chooses alternative *m* if and only if it yields the highest latent utility, i.e.

$$y_{im} = \begin{cases} 1 & \text{if } y_{im}^* \ge y_{im'}, \forall m' \neq m, m' = 1, \dots, M \\ 0 & \text{otherwise} \end{cases}$$

Show that

$$P\left(y_{im} = 1 | x_i\right) = \frac{\exp\left(x'_i \beta_m\right)}{\sum_{m'=1}^{M} \exp\left(x'_i \beta_{m'}\right)}$$

How do you interpret the coefficients β_m ?

You may take M = 3 if you find it notationally cubersome to work with general M.

- 2. Answer the following questions as true, false or uncertain and explain your answers.
 - (a) consider the limited depedent variable model

$$y(t) = \begin{cases} x(t)\beta + u(t) & \text{if } x(t)\beta + u(t) > 0\\ 0 & \text{otherwise} \end{cases}$$

Regressing y(t) on x(t) using only those observations for which $y(t) \neq 0$ yields estimates that overstates the true value of β .

(b) Consider the limited dependent variable model

$$y(t) = \begin{cases} x(t)\beta + u(t) & \text{if } x(t)\gamma + e(t) > 0\\ 0 & \text{otherwise} \end{cases}$$

where $(u(t), e(t)) \sim N(0, \Sigma)$. Applying nonlinear least square to the regression equation of y(t) on x(t) for the sample of observation with $y(t) \neq 0$:

$$y(t) = x(t)\beta + \rho \frac{\phi(x(t)\gamma)}{\Phi(x(t)\gamma)} + \eta(t)$$

will yield consistent estimate of the parameter β . ϕ and Φ are the density and the c.d.f. of a standardized normal distribution, and ρ is a parameter.

(c) The answer to question (2.b) does not change if merely $E(u(t)|e(t)) = \rho e(t)$ where $e(t) \sim N(0, 1)$.

- (d) Consider the probit model $\delta(t) = 1$ when $y(t) = x(t)\beta + e(t) > 0$ with $e(t) \sim iid \ N(0,1)$, and $\delta(t) = 0$ otherwise. Applying weighted nonlinear LS to the regression equation $\delta(t) = 1 \Phi(-x(t)'\beta) + u(t)$ (where Φ is the standard normal cdf) yields a consistent estimator for β that is as efficient as the maximum likelihood estimator for β .
- 3. This is an empirical exercise about multinomial logit models.

Use the data set bell_female.dat. Consider a three-state classification of a woman's hours of work: she doesn't work at all(designate by setting the discrete variable b=1); she works part of the year which implies that 0 < Weeks < 20(designated by b=2); and she works most of the year with Weeks $\geq 20(b=3)$. Estimate the probability Pr(b = j|x) using a multinomial logit model and test whether marriage influences the likelihood that a woman works part of the year instead of most of the year.