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Statistical Inference Based on Extremum
Estimators

1 Introduction

Suppose �0, the true value of a p-dimensional parameter, is known to lie in some subset
S � Rp: Often we choose to estimate �0 by minimizing (over � 2 S) some objective function
Qn � Q(�; y), where the random vector y represents the data from a sample of size n. Some
examples are:

1. Linear least squares regression, whereQn = (y�X�)0(y�X�) andX�0 is the conditional
expectation of the random vector y given the regressor matrix X:

2. Nonlinear least squares (NLS), where Qn = [y � g(�;X)]0[y � g(�;X)]; g(�0; X) is the
conditional expectation of y given X, and g has a known functional form.

3. Least absolute deviation (LAD) regression where Qn =
P
i jyi�x0i�j and the conditional

median of yi given xi is equal to x0i�
0:

4. Maximum likelihood (ML), where Qn is minus the log of the joint probability density
(or mass) function of the data in a fully speci�ed parametric model.

5. Generalized method of moments (GMM), where Qn = m(�; y)0Wm(�; y); m(�; y) is a
q-dimensional vector such that plim m(�0; y) = 0, and W is a q � q positive de�nite
matrix.

2 Asymptotic Properties of Extremum Estimators

Clearly, not every function Qn will lead to good estimates. We shall consider functions that
have the following property: when n is large, Q(�; y)=n (viewed as a function of �) is with
high probability very close to a nonrandom function Q�(�) that has a pronounced minimum
at �0. Then, in large samples, it seems plausible that �̂, the minimizer of Q(�; y), should with
high probability be close to �0; the minimizer of Q�(�). This intuition is made precise in the
following consistency theorem:

Suppose Q(�,y) is a continuous function of � in the compact parameter set S�Rp.
Then, if n�1Q(�,y) converges in probability uniformly to a function which has a unique
minimum at �0, the value �̂ that minimizes Q(�,y) converges in probability to �0.

Regularity assumptions on the exogenous variables and weak dependence across trials
often imply that these conditions for consistency hold.

EXAMPLE: In the linear model y = X�0 + u, suppose the u�s are i.i.d. with mean
zero, variance �2 and independent of X . Assume further that n�1X 0X converges in
probability to a positive de�nite matrix B. For the least-squares criterion function, we
have

Qn
n
=
(y �X�)0(y �X�)

n
=
u0u

n
� 2(� � �

0)X 0u

n
+
(� � �0)0X 0X(� � �0)

n

But n�1u0u
p! �2 and n�1X 0u

p! 0. Thus plim n�1Qn = (� � �0)0B(� � �0) where
the convergence is uniform in any compact set of parameter values. Since B is positive
de�nite, this limiting function has a unique minimum at � = �0.

1



Given consistency and employing linearization methods, we can often show that extremum
estimators are approximately normal when the sample size is large. Suppose Q(�; y) is twice
di¤erentiable in � with �rst derivative vector Sn(�) and continuous second derivative matrix
Hn(�). (Sn is often called the �score� and Hn the �hessian� for Qn. Of course both will
also depend on the sample data y, but this dependency will be surpressed to simplify the
notation.) If �̂ is a regular interior minimum of Qn , then Sn(�̂) = 0 and Hn(�̂) is positive
de�nite. Using the mean value theorem, we can write

0 = n�1=2Sn(�̂) = n
�1=2Sn(�

0) + n�1H�
n

p
n(�̂ � �0)

where H�
n is the hessian Hn with each element evaluated at a � value somewhere between

�̂ and �0. Suppose that n�1=2Sn(�0) converges in distribution to a normal random vector
having mean zero and p� p covariance matrix A. Then, if n�1H�

n converges in probability to
a p�p positive de�nite matrix B, it follows that

p
n(�̂��0) has the same limiting distribution

as �B�1n�1=2Sn(�0) and hence
p
n(�̂ � �0) d! N(0; B�1AB�1): (1)

In large samples, one might then act as though �̂ were normal with mean �0 and variance
matrix n�1 bB�1 bA bB�1, where bA and bB are consistent estimates of A and B.

To prove that (1) is valid, we must show that n�1=2Sn(�0) tends to a normal random
variable and that n�1H�

n tends to a nonrandom, full-rank matrix. In many problems Sn(�
0)

is the sum of n independent (or weakly dependent) mean-zero random variables; standard
central limit theorems can then be employed. Demonstrating the convergence of n�1H�

n is
usually more di¢ cult since we typically do not have a closed form expression for H�

n: However,
continuity arguments and the law of large numbers often can be employed to show that
n�1H�

n converges in probability to B = lim En�1Hn(�0). Rigorous proofs of the asymptotic
normality of extremal estimators will not be attempted here. The LAD case where Q is
nondi¤erentiable is particularly tricky since the linearization no longer can be obtained by
the mean value theorem. In contrast, the OLS case where Q is quadratic is simple since then
Hn does not depend on �.

3 Computing Extremum Estimates

In practice, the computational problem of �nding the minimum of Q(�; y) is nontrivial. Com-
puter intensive iterative methods are often successful. If Q(�; y) is twice di¤erentiable in �;
the quadratic Taylor series approximation around a point � = a0 is given by

Q(�; y) � Q(a0; y) + (a0 � �)0S0 + 1
2
(a0 � �)0H0(a0 � �)

where S0 is the gradient of Qn and H0 is the matrix of second derivatives, both evaluated at
� = a0. The Newton-Raphson algorithm for minimizing Qn starts with a trial value a0 and, if
H0 is positive de�nite, minimizes the quadratic approximation obtaining a1 = a0 �H�1

0 S0 .
[If H0 is not de�nite, one can replace it with H+ cI for some small number c.] The next step
is to evaluate S and H at � = a1 and repeat the calculation. Using the recursion ar+1 = ar�
H�1
r Sr, one continues until ar+1 � ar. Then, as long as Hr is positive de�nite, one uses ar

as the estimate �̂ since S(ar) � 0. Of course, this yields at best only a local minimum; one
must try various starting values a0 to be con�dent that one has truly minimized Qn.

The Gauss-Newton algorithm is a variant of Newton-Raphson for the special case where
Qn can be written as e0e=2 and the elements of the n-dimensional vector e are nonlinear
functions of �. De�ning Z to be the n � p matrix @e=@�0, the gradient vector S can be
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written as Z 0e. Moreover, the hessian H is equal to Z 0Z plus a term that tends to be smaller.
The G-N algorithm drops this smaller term and uses the recursion ar+1 = ar�(Z 0rZr)�1Z 0rer,
where Z and e are evaluated at the previous estimate ar. Note that the G-N algorithm can
be implemented by a sequence of least squares regressions.

4 Two-step Estimators

We often encounter problems where Qn(�) is di¢ cult to minimize because some elements
of � enter in a complicated way. In those cases, a two-step estimation procedure is often
employed. Suppose the parameter vector is partitioned into two parts (�1; �2) and that �1
enters into Q in a simple way so that, if �2 were known, Q could easily be minimized over
�1:That is, de�ning the gradient of Q with respect to �1 by S1 , we assume that the equation
S1(�1; �2) = 0 can easily by solved as �1 = h(�2; y). If one could �nd a simple estimate say
~�2 , one might estimate �1 by e�1 = h(e�2; y). That is, we would estimate �1 by minimizing
Q(�1;e�2). If both the (computationally di¢ cult) true extremal estimator b� and the simple
estimator e�2 are consistent and jointly asymptotically normal, then it can be shown that
the estimator e�1 is also consistent and asymptotically normal. Its asymptotic variance will
typicaly depend on the asymptotic variance of e�2 and can be computed by linearizing the
�rst-order condition S1(e�1;e�2) = 0. If, for example,

n�1=2S1(e�1;e�2) = n�1=2S1(�01; �02) +B11pn(e�1 � �01) +B12pn(e�2 � �02) + op(1)
then the asymptotic variance of e�1 can be calculated from

p
n(e�1 � �01) = �B�111 [n�1=2S1(�01; �02) +B12pn(e�2 � �02)] + op(1)

as long as one knows the joint limiting distribution of n�1=2S1(�01; �
0
2) and

p
n(e�2 � �02):

5 Asymptotic Tests Based on Extremum Estimators

Consider the null hypothesis that the true parameter value �0 satis�es the equation g(�0) = 0,
where g is a vector of q smooth functions with continuous q�p Jacobian matrix G(�) = @g=@�.
For notational convenience we de�ne G � G(�0). Suppose we have estimated � by minimizing
some objective function Q(�; y) as in section 2 and that the standardized estimator

p
n(�̂��0)

is asymptotically N(0; V ) where V = B�1AB�1. (A and B are de�ned in that section.)
Then, using the delta method, we �nd

p
n[g(b�)� g(�0)] � Gpn(b� � �0) d! N(0; GV G0):

Under the null hypothesis, ng(�̂)0(GV G0)�1g(�̂) is asymptotically �2(q). Replacing G with
the consistent estimate cG � G(b�) does not a¤ect the asymptotic distribution. Hence, for
some consistent estimate bV ; we might reject the hypothesis that g(�0) = 0 if theWald statistic

W � ng(b�)0( bGbV bG0)�1g(b�) (2)

is larger than the 95% quantile of a �2(q) distribution.
Sometimes solving for b� is computationally di¢ cult and one seeks a way to test the

hypothesis that g(�0) = 0 that avoids this computation. Suppose there exists an easy-to-
calculate estimate ~� that satis�es g(~�) = 0: Suppose further that, when the null hypothesis is
true, ~� is consistent, asymptotically normal and the usual linear approximations are valid:

p
n[g(�̂)� g(~�)] = G

p
n(�̂ � ~�) + op(1)
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n�1=2[Sn(�̂)� Sn(~�)] = B
p
n(�̂ � ~�) + op(1):

Assuming B is a continuous function of �0; de�ne ~G = G(~�) and ~B = B(~�): Since g(~�)
and Sn(�̂) are both zero vectors, we see that W is asymptotically equivalent under the null
hypothesis to

n(b� � ~�)0 bG0( bGbV bG0)�1 bG(b� � ~�) (3)

and to
n�1Sn(~�)

0 ~B�1 ~G0[ ~G ~V ~G0]�1 ~G ~B�1Sn(~�): (4)

Note that (4) can be computed without solving the minimization problem.
In the linear regression model where Qn = 1

2(y �X�)
0(y �X�); we �nd H = X 0X and

var[Sn(�)] = �2X 0X: Suppose the null hypothesis is the linear constraint G�0 = 0: Estimating
A by s2X 0X=n and B by X 0X=n, we obtain

W = b�0G0[G(X 0X)�1G0]�1Gb�=s2
which is q times the usual F-statistic. This feature of LS regression (that the variance matrix
for the score is proportional to the expectation of the hessian) holds in many estimation
problems. When it occurs, not only do (2), (3) and (4) simplify but also some additional
asymptotically equivalent expressions for the Wald statistic are available.

Consider the problem of minimizing Q(�; y) subject to the constraint g(�) = 0. The
solution can be used for our ~�: The �rst order condition for an interior minimum is Sn(~�) =
~G0� which implies

� = ( ~GB�1 ~G0)�1 ~G0B�1Sn(~�) and Sn(~�) = ~G0( ~GB�1 ~G0)�1 ~G0B�1Sn(~�):

If A = cB and ~� is the constrained minimizer of Qn; the test statistics (3) and (4) simplify to

n(�̂ � ~�)0 bB(�̂ � ~�)=ĉ (3�)

and
n�1Sn(~�)

0 ~B�1Sn(~�)=ĉ : (4�)

Furthermore, a Taylor�s series expansion of the statistic

2[Qn(�̂)�Qn(~�)]=ĉ (5)

shows that it too is asymptotically equivalent to (3�) and hence to W .
Thus, ifA = cB for some nonzero scalar c; plim ĉ = c, and ~� is the constrained minimizer of

Qn; we have four aymptotically equivalent statistics that might be used for testing g(�0) = 0:

(a) a quadratic form in g(b�) :
ng(b�)0( bG bB�1 bG0)�1g(b�)=ĉ

(b) a quadratic form in the estimator di¤erence ~� � b�
n(b� � e�)0 bB(b� � e�)=ĉ

(c) a quadratic form in the score (which is the same as a quadratic form in the Lagrange
multiplier �)

n�1S(e�)0 eB�1S(e�)=ĉ � n�1�0 eG eB�1 eG0�=ĉ
(d) the di¤erence in constrained and unconstrained minimized objective function (multi-

plied by 2/ĉ):
2[Q(e�; y)�Q(b�; y)]=ĉ:
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Although our discussion has concerned only the null distribution of these tests, the as-
ymptotic equivalence holds also under nearby alternatives. Exact equivalence occurs in the
linear regression case because there H and G are nonrandom and do not depend on the
unknown �0. In the general case where H may be random and both may depend on �0, we
�nd only asymptotic equivalence.

There are many di¤erent ways to consistently estimate B, including the hessians n�1Hn(b�)
and n�1Hn(~�) as well as the analytic expression n�1EHn(�) evaluated at b� or ~�. Thus there
are really lots of asymptotically equivalent test statistics available.

Computational convenience is often used as a basis for choice among asymptotically equiv-
alent tests. However, if p and q are large, the asymptotic approximations are sometimes poor.
It is usually wise to perform some simulations to verify that the chosen test statistic has ap-
proximately the correct small sample rejection probability under the null hypothesis.

When Q is minus the log likelihood function we �nd that A = B since A and B are
then alternative expressions for the limiting information matrix; (d) is then the likelihood
ratio statistic and (c) is the score statistic. When the correct weighting matrix is used in the
quadratic form de�ning GMM, we also have A proportional to B and a choice of tests.

6 Score Tests as Diagnostics

The following type of problem often occurs in econometrics. We postulate a fairly simple
probability model for the data but entertain the possibility that a more complicated model
may be needed. Let Qn(�1; �2) be the objective function assuming the complicated model
is correct; �1 is the p-dimensional parameter vector in the simple model and �2 is the q-
dimensional vector of additional parameters need to cope with the complication. The simple
model being correct is equivalent to the parametric hypothesis that �2 = 0. Thus, before
publishing estimates of �1 based on the simple model, one might want to check that �2 is
really close to zero. A Wald or likelihood ratio test would require actually estimating the
complicated model. The score test does not and is therefore commonly used as a diagnostic.

Assuming that A = B, the score test statistic for �2 = 0 is n�1S(e�)0 eB�1S(e�), wheree� minimizes Qn subject to the constraint. The score vector S can be partitioned into two
subvectors, say S1 and S2 . But, when evaluated at the constrained estimate e�, S1 must be
zero (since that is the �rst-order condition for minimizing Q subject to �2 = 0.) Thus the test
statistic can be written as n�1S2(e�)0CS2(e�), where C is the q � q lower right hand block of
B�1 . Using n�1H(e�) as an estimate of B and partitioning conformably, a natural estimate
of C is n( eH22� eH21 eH�1

11
eH12)�1 . In other words, to test the hypothesis that the simple model

is valid: �rst, compute e�1, the MLE for the parameters of the simple model; second, evaluate
the score S2 at e� = (e�1; 0); third, compute the test statistic S2(e�)0( eH22� eH21 eH�1

11
eH12)�1S2(e�).

In many examples, the information matrix is block diagonal implying plim n�1H12 =
0; then the test statistic can be simpli�ed to S2(e�)0 eH�1

22 S2(
e�). In other words, when the

information matrix is block diagonal, one can test �2 = 0 by pretending that �1 were known
and equal to the estimate e�1.
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