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Vector Time-Series Models

1 Introduction

The n-dimensional, mean-zero vector process fztg is said to be weakly stationary if second-
order moments exist and only depend on time di¤erences. These moments are completely
described by the doubly-in�nite sequence of n� n autocovariance matrices

�r = E(ztz
0
t�r) r = 0; 1;�1; 2;�2; :::

Note that �r = �
0
�r so �0;�1; ::: are su¢ cient to describe the process.

The weakly stationary, n-dimensional, mean-zero vector process f"tg is said to be white
noise if E("t"

0
s) = 0 when t 6= s and � = E("t"

0
t) is positive de�nite. An in�nite sequence of

n-dimensional vectors fztg is said to be a time invariant linear vector process if they can be
expressed in the form

zt =
1X

j=�1
Cj"t�j

for some n-dimensional white-noise process f"tg and some in�nite sequence of real n�nmatri-
ces fCjg whose elements are square summable: Usually we will make the stronger assumption
that the elements of C are absolutely summable. Using the lag operator C(L) =

P
j CjL

j ,
we can write more succinctly yt = C(L)"t: As in the scalar case, C(L) is sometimes called
a linear �lter ; if Cj = 0 when j < 0 so C(L) is a polynomial in L; C(L) is said to be a
one-sided backwards �lter and yt is called a moving average process. If Cq(L) is a polynomial
of �nite order q; the moving average process zt = Cq(L)"t is said to be an MA(q) process.
Its autocovariances are zero after lag q: Moving average processes with absolutely summable
coe¢ cients are always weakly stationary with autocovariances given by

�r =
1X
j=0

Cr+j�C
0
j r � 0 .

These autocovariances will also be absolutely summable. For any nonsingular matrix D;
the MA process with lag polynomial D�1C(L) and variance matrix D�D0 has the same
autocovariances as the process with lag polynomial C(L) and variance matrix �: Thus, with-
out restricting the covariances, we will use the parsimonious representation where C0 = In:
(Alternatively, one could set � = In; but that usually turns out to be less convenient.)

2 Multivariate Spectrum

For an n-dimensional vector process fztg with absolutely summable autocovariances, we
de�ne the matrix autocovariance generating function as the lag operator G(L) =

P
r �rL

r:
The spectrum is de�ned as the n� n complex matrix function (for �� < � < �)

s(�) =
1

2�
G(e�i�) =

1

2�

1X
r=�1

�re
�i�r :

Since �r = �
0
�r, the diagonal elements of S(!) are real and the ij element of S(!) is the

complex conjugate of the ji element. The inverse relation is

�r =

Z �

��
s(!)ei�rd�:
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As in the scalar case, the spectral theory can be extended to the case where the autocovari-
ances are not absolutely summable, but we omit the details. If wt = C(L)zt for some lag
polynomial matrix C with square summable coe¢ cients, then

sw(�) = C(e�i�)sz(�)C(e
i�)0:

The spectral representation theorem states that every discrete time vector stationary
process can be written as

zt =

Z �

��
ei�tdH(�)

where H(�) is a continuous vector process with uncorrelated increments. When the auto-
covariances are absolutely summable, dH(�) has variance matrix s(�): Again, we have the
interpretation that zt can be represented as a sum of sine and cosine functions with ran-
dom weights; s(�) measures the size of the weight given to the sinusoidal functions having
frequencies in a neighborhood of �: We shall work out the details only for the case n = 2:

Suppose zt = (xt; yt)0 is two-dimensional stationary process with spectrum

s(�) =

�
sxx(�) sxy(�)
syx(�) syy(�)

�
The diagonal elements are just the univariate spectral density functions. The cross-spectrum
between y and x is de�ned as the 21 element

syx(�) =
1

2�

1X
r=�1


yx(r)e
�i�r:

It is generally complex and can be written as R(�)ei�(�); where R(�) = jsyx(�)j and tan �(�) =
Im(syx(�))=Re(syx(�)): Three new concepts are often employed in studying the relationship
between y and x:

1. The gain jsyx(�)j=sxx(�) which measures how the weight dHx(�) given to the cyclical
component of frequency � in the spectral decomposition of xt is ampli�ed to obtain the
corresponding weight dHy(�).

2. The phase -�(�) which measures how the cyclical component in yt of frequency � lags
the corresponding component in xt.

3. The coherence
jsyx(�)j2

sxx(�)syy(�)

which measures the correlation between the weights dHx(�) and dHy(�):

The interpretation of the gain, phase and coherence is clearest in the special case where
yt is a �ltered version of xt plus error. If yt = C(L)xt + ut where ut is uncorrelated with xs
for all t and s; then a little algebra shows

syy(�) = sxx(�)jC(e�i�)j2 + suu(�) and syx(�) = C(e�i�)sxx(�):

If C(e�i�) is written as r(�)ei'(�); the gain is just r(�) and the phase is just �'(�): They
measure the e¤ect of the �lter on the amplitude and phase of the cyclical components of the
time-series. Suppose, for example, xt = A cos(�t)+B cos(�t) where A and B are uncorrelated
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random variables with zeri mean and unit variance. Let yt = 10xt�s + "t where f"tg is a
unit-variance white noise process, independent of fxtg. Then

yt = 10 cos(�t� �s) + 10 sin(�t� �s) + "t .

The spectrum for fxtg is zero except for spikes at � = ��. The spectrum for fytg is every-
where equal to (2�)�1 except for additional spikes at � = ��. Since C(e�i�) = 10e�i�s;
syx(�) is 10e�i�s times a spike at � = ��. Thus, at frequency �; the phase is �s, the amount
the �lter causes the cycle to be lagged, and the gain of 10 measures the e¤ect of the �lter on
the amplitutde of the cycle. The coherence at frequency �� is one if ut has zero variance;
it drops to zero as �2" tends to in�nity. At all other positive frequencies, the phase, gain and
coherence are unde�ned because sxx(�) is zero.

For arbitrary stationary time series yt and xt; we can always write yt = C(L)xt + ut,
where C(L)xt is the best linear predictor of yt given all past, present, and future values of xt
and the prediction error ut is by de�nition uncorrelated with all xs:� Thus the interpretation
of the cross spectrum given above works also for the general case.

3 Best Linear Predictors

In the �rst set of notes, we looked at a simple prediction problem known as singal extraction.
Here we present a generealization. Let fxtg be a q-dimensional process and let fytg be a
p-dimensional process. We assume that the joint process fxt; ytg is stationary. We partition
the joint autocovariances and the joint autocovariance generating function as

�r = E

�
xt
yt

��
xt�r yt�r

�
=

�
�xx(r) �xy(r)
�yx(r) �yy(r)

�
G(L) =

1X
r=�1

�
�xx(r) �xy(r)
�yx(r) �yy(r)

�
Lr =

�
Gxx(L) Gxy(L)
Gyx(L) Gyy(L)

�
For some p � q matrix lag operator D(L) =

P1
j=�1DjL

j , let D(L)xt be the best linear
predictor of yt given all past, present, and future values of xt: Since the prediction error
yt�D(L)xt must be uncorrelated with xs for all s and t, it follows that �yx(r) � E(ytx

0
t�r) =P

j Dj�xx(r � j) and, hence,

Gyx(L) =
1X

r=�1
�yx(r)L

r =
1X

j=�1

1X
r=�1

DjL
r�xx(r � j)Lr�j = D(L)Gxx(L)

so
D(L) = Gyx(L)G

�1
xx (L)

as long as the inverse exists.
This last result allows us to �nd a simple expression for the best linear predictor D(L)xt

in terms of the moving average representation of fxt; ytg: Let n = p+ q: Suppose�
xt
yt

�
=

�
A(L)
B(L)

�
"t ,

where A is q�n; B is p�n; and f"tg is an n-dimensional white noise process with covariance
matrix E�t�0t = �: Then, a little algebra yields

Gxx(L) = A(L)�A(L�1)0 and Gyx(L) = B(L)�A(L�1)0 .

It follows that
D(L) = B(L)�A(L�1)0[A(L)�A(L�1)0]�1:

In general, D(L) will be a two-sided �lter.
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4 Vector ARMA Models

4.1 General Case

Let Ap(L) = I �A1L� :::�ApLp and Bq(L) = I +B1L+ :::+BqL
q be n�n lag polynomial

matrices. Then, if "t is a vector white noise with covariance matrix 
, any stationary solution
fztg of the di¤erence equation

Ap(L)zt = Bq(L)"t

is called a vector ARMA(p,q) process. A complex number � satisfying the determinantal
equation jA(�)j = 0 is called a root of A(L). If none of the np roots lie on the unit circle, it
can be shown that the di¤erence equation has a unique stationary solution. If all the roots
lie outside the unit circle, A(L) has an inverse and zt can be written as a backwards �lter of
"t; that is, zt = A�1p (L)Bq(L)"t:The spectrum of this invertible ARMA process is given by

sz(!) =
1

2�
A�1p (e

�i!)Bq(e
�i!)
B0q(e

i!)A�1p (e
i!)0 .

Since [Ap(L)]�1 can be written as C(L)=jAp(L)j, where C is the matrix of cofactors and
jAj is the determinant of A; we have

jAp(L)jzt = D(L)"t

where D(L) = C(L)Bq(L) is a matrix of lag polynomials of maximum lag order s = (n �
1)p+q: Thus, if there are no canceling common factors, each component of zt has a univariate
ARMA(np; s) representation with identical AR polynomial.

4.2 Vector Autoregression

In practice, it seems hard to get reasonable estimates of vector ARMA(p,q) models with
limited data unless n; p and q are very small. As a result, most empirical work sets q = 0:
The resulting vector autoregressive model (often called a VAR) is widely used in applied
macroeconomics. Allowing for r additional exogenous variables x1t; :::; xrt such as intercepts
and time trends, the model takes the form

zt = A1zt�1 + :::+Apzt�p +Bxt + "t: (1)

It is assumed that p is large enough so the lagged z�s capture all the autocorrelation in the
series. In addition, it is usually assumed that the matrices A1; :::; Ap and B are unrestricted
so every lagged variable and exogenous variable appears in every equation with a nonzero
coe¢ cient.

If we multiply both sides of equation (1) on the left by the nonsingular matrix A0 we obtain
another equation that generates the same solution fztg: The two models are equivalent and
there is no loss in using the parsimonious parameterization. Hence, in de�ning a VAR model,
we set A0 = Ip:

Using the Beveridge-Nelson decomposition, equation (1) can be rewritten as

4zt = ��zt�1 +A�(L)4zt�1 +Bxt + "t (2)

where � = I � A1 � ::: � Ap and A�(L) is a lag polynomial of degree p � 2: This version is
often called the �error correction� form of the model. The name comes from the following
interpretation. Suppose the only exogenous variable is an intercept term so Bxt is just the
vector b: One might say that the system is in long-run equilibrium if 4zt has mean zero for
all t: This can occur only if �zt = b: If � is invertible, this means that the model can be
rewritten as

4zt = ��(zt�1 ���1b) +A�(L)4zt�1 + "t:
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The vector ��1b can be interpreted as the long-run equilibrium value for zt and 4zt is
interpreted as responding to the disequilibrium �error�zt�1���1b: A similar interpretation
holds even if � is not invertible as we shall see when we consider cointegration models.

4.3 Estimation of VAR Parameters

As long as the lag polynomial I � A1L� :::� ApL
p is invertible, "t is uncorrelated with the

right-hand variables. Each of the n equations in (1) can be estimated by an OLS regression
with m = np + r regressors and T � = T � p observations. These will be the conditional
Gaussian maximum likelihood estimates, where we condition on the �rst p observations.

To see this, let Y be the T � � n matrix of observations for the �dependent�variables zt
in (1), let X be the T � �m matrix of observations for the �explanatory�variables (x�s
and lagged z0s), let V be the T � � n matrix of errors, and let � be a m � n matrix of
regression coe¢ cients. The regression model (1) can be written compactly as

Y = X�+ V:

Under normality, twice the conditional log likelihood function is (except for an additive
constant)

L = T � log j
�1j � tr
�1V 0V:

Di¤erentiating with respect to 
�1 and using the fact that @ log jSj=@S = S�1; we �ndb
 = V 0V=T �: Thus the MLE for � is found by maximizing the concentrated likelihood
function

L� = �T � log jV
0V

T �
j � T �n

or, equivalently, minimizing jV 0V j = j(Y �X�)0(Y �X�)j: But de�ning the OLS esti-
mator P = (X 0X)�1X 0Y and noting that I�X(X 0X)�1X 0 spans the space orthogonal
to X , we see that

j(Y �X�)0(Y �X�)j = j(Y �XP )0(Y �XP ) + (P ��)0X 0X(P ��)j

is minimized at � = P:

The same argument applies to equation (2). Gaussian maximum likelihood estimates of
the parameters of the error-correction form of the model are obtained by equation-by-
equation OLS.

5 Granger Causality

Following the terminology of earlier time-series scholars, Granger suggested that, for a bivari-
ate stationary process fxt; ytg; a causal relationship between the two series could be de�ned
in terms of best linear predictors. In particular, if P(ajb) represents the best linear predictor
of a given b; Xt = (xt; xt�1; xt�2; :::); and Yt = (yt; yt�1; yt�2; :::); then y is said to cause x
if and only if P(xt+1jXt; Yt) actually depends on Yt: If; in addition, P(yt+1jYt; Xt) does not
depend on Xt; a one-way causal relationship from y to x is said to exist. (The restriction to
linear predictors is made for convenience and could be relaxed.) Although one can easily give
examples where this de�nition does not seem appropriate, these examples typically involve
the introduction of a third variable that causes both x and y: If applied in the appropri-
ate conditional setting, Granger�s de�nition seems to be consistent with the way the word
�causality� is used in everyday speech. Of course, in practice, it may not be possible to
condition on the appropriate third variables thus making the Granger approach infeasible.
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Suppose the stationary process fxt; ytg has the moving average representation�
xt
yt

�
=

�
P (L) Q(L)
R(L) S(L)

� �
ut
vt

�
where fut; vtg is a bivariate white-noise process with covariance matrix � and Q(0) = R(0) =
0: In scalar notation, we have:

xt = P (L)ut +Q(L)vt

yt = R(L)ut + S(L)vt .

If the 2� 2 lag polynomial matrix is invertible, we �nd the autoregressive representation

xt = A(L)xt�1 +B(L)yt�1 + ut

yt = C(L)xt�1 +D(L)yt�1 + vt

where ut and vt are uncorrelated with lagged x�s and y�s. Since P(xt+1jXt; Yt) = A(L)xt +
B(L)yt; by Granger�s de�nition y causes x if and only if B(L) is nonzero: Note that B(L) = 0
if and only if Q(L) = 0; so an alternative characterization in this invertible case is that y
causes x if and only if Q(L) is nonzero.

Sims pointed out a third way to characterize causation. He proved that, in the invertible
case, y causes x (in the sense of Granger) if and only if the best linear predictor of yt given all
current, past and future values of x actually depends on the future values. That is, de�ning
Xt+ = (xt+1; xt+2; :::); then y causes x if and only if P(ytjXt; Xt+) actually depends on Xt+:
The following proof of Sims�characterization is based on the one given in the textbook.

We �rst show that Q(L) = 0 implies that P(ytjXt; Xt+) does not depend on
Xt+: De�ne wt = vt � ut�uv=�uu, so wt is uncorrelated with us for all s and t.
Then, Q(L) = 0 implies ut = P�1(L)xt and hence

yt = R(L)ut + S(L)[wt +
�uv
�uu

ut] = T (L)xt + S(L)wt

where T (L) = [R(L)+ S(L)�uv=�uu]P
�1(L) is a one-sided backward �lter. But

wt is uncorrelated with xs for all s and t: Thus, Q(L) = 0 implies

P(ytj Xt; Xt+) = P[T (L)xtj Xt; Xt+] +P[S(L)wtj Xt; Xt+] = T (L)xt

which does not depend on future values of xt:
Conversely, suppose P(ytjXt; Xt+) = 	(L)xt where 	(L) is a one-sided back-

wards �lter. Then �t � yt�	(L)xt is uncorrelated with xs for all s and t. Both
�t and xt have univariate moving average representations, say

�t = F (L)"t

xt = G(L)�t

where F (L) and G(L) are one-sided backwards �lters with F (0) = G(0) = 1; "t
and �t are each white-noise series. Now de�ne et = "t+ �t, where  = 	(0): Since
�t and xs are uncorrelated for all s and t, it follows that "t and �s are uncorrelated
for all s and t. Hence fet; �tg is a bivariate white-noise series. Substituting, we
�nd that

yt = 	(L)xt + �t = 	(L)G(L)�t + F (L)[et �  �t]
= [	(L)G(L)�  F (L)]�t + F (L)et
= H(L)�t + F (L)et
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where H(L) = 	(L)G(L)�  F (L) is a one sided backwards �lter and H(0) = 0:
Thus the assumption that the best linear predictor of yt given all values of x
does not depend on future x implies that fxt; ytg has a triangular moving average
representation of the form

xt = G(L)�t

yt = H(L)�t + F (L)et

and hence y does not cause x:

6 Dynamic Structural Models

6.1 The simultaneous equations model

The VAR model (1) expresses the conditional mean of zt (given its past history) as a linear
function of its most recent past history. The parameters have no particular meaning in terms
of economic behavior or technology. The equations simple represent a convenient way to
capture the autocorrelations in the data. They are useful for forecasting the future from past
realizations under the assumption that the process that generates the data has not changed.
Sometimes, however, economists wish to specify relationships among economic variables that
do have economic meaning. The Marshallian supply and demand model for a nonstorable
good under perfect competition is a standard example. The system consists of three equations:
one relates quantity demanded to price, a second relates quantity supplied to price, and a
third says that over the period in question price has adjusted to equate quantity supplied
and quantity demanded. Let zt be a two-dimensional vector consisting of quantity traded in
period t and the equilibrium price during that period. Then, if xt is a vector of exogenous
variables (like weather condtions) that describe the conditions of the market during period t
and if we permit supply and demand to depend on past history, we might write this model
in linear form as

A(L)zt +B(L)xt = "t: (3)

The vector "t is usually interpreted as representing omitted variables that a¤ect supply and
demand. If we assume that, conditional on all x0s and on past values of zt; the "t are white
noise, then we have a model that looks like the VAR model (1). But there are three important
di¤erences.

1. In the supply-demand model, one equation is interpreted as describing the behavior of
consumers and the other equation is interpreted as describing the behavior of producers;
in a standard VAR model the equations have no necessary economic interpretation.

2. There is no reason to believe every variable that appears in the demand equation
necessarily appears in the supply equation. For example, we might postulate that
weather conditions a¤ect supply but not demand.

3. In the supply-demand model, there is no reason to impose the restriction A0 = I: In-
deed, the assumption that price is determined by the interaction of supply and demand
precludes that assumption.

It is true that, given a supply equation and a demand equation, one can always solve for
a �reduced form�that looks like a VAR model with A0 = I: Indeed, if the goal is simply to
forecast price and quantity from past history, this form is all that is necessary. Sometimes,
however, our goal is not simply forecasting. We may want to estimate and test hypothesis
about the parameters of the individual supply or demand equations.
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More generally, economists often propose models that describe the behavior of di¤erent
groups of people. The coe¢ cients in a given structural equation are de�ned in terms of
some economic theory. Although one will typically set units of measurement by assuming the
diagonal elements of A0 are equal to one, there may be compelling reasons to allow a given
structural equation to contain more than one current endogenous variable. The resulting
equilibrium model is often called the dynamic simultaneous equations model. Setting A0 =
I is no longer just a convenient normalization but changes the meaning of the remaining
parameters.

In such a structural interpretation, the individual equations are taken to be autonomous,
each describing the behavior of a speci�c group of agents. It may be meaningful to change
the coe¢ cients of one equation while keeping the coe¢ cients of the other equations constant.
Thus the parameters in the matrices A0; :::; Ap may be of interest outside of their role in
generating forecasts under unchanging structure. For example, they may be of use in pre-
dicting the e¤ects of policy intervention. Of course, estimating the matrices A0; :::; Ap will
generally not be possible unless some further restrictions are imposed. Although the parame-
ters of a VAR model can be consistently estimated by least squares regressions, estimation
of the structural parameters in a simultaneous equations model will need some alternative
procedure such as the method of instrumental variables.

The dynamic simultaneous equations model was �rst proposed by researchers at the
Cowles Foundation in the 1940�s. Early applications were times-series studies of markets
for individual agricultural goods and of the aggregate macro economy. In recent years, the
model is often used with cross-section data to study the behavior of individual decision-
making units. In both cases, the estimation methods used are the ones initially proposed by
the Cowles researchers �fty years ago.

6.2 LIML and 2SLS

Suppose we are interested in one equation of a simultaneous system, say

y = Z� + u

where y is a T � 1 vector of observations on an endogenous variable, Z is a T � q matrix
of �explanatory�variables, and u is a T � 1 vector of unobserved errors. The columns of Z
represent (1) other endogenous variables, (2) lagged endogenous variables, and (3) exogenous
variables. If enough lagged endogenous variables have been included, ut will be a white noise
series and uncorrelated with all endogenous variables dated earlier than t. However, ut will be
correlated with any contemporaneous endogenous variable. If we have not included enough
lags, even lagged endogenous variables may be correlated with ut:

Let X be the matrix of observations on m �predetermined�variables; that is, variables
that at time t are uncorrelated with ut: We assume that m � q; that is, the number of
predetermined variables is at least as great as the number of parameters to be estimated.
Using these as instruments, the two-stage least-squares (2SLS) estimator of � is that vector
d that minimizes

(y � Zd)0X(X 0X)�1X 0(y � Zd):

The limited information maximum likelihood (LIML) estimator maximizes the condi-
tional Gaussian likelihood function subject only to the restriction that some of the possible
predetermined variables do not appear in the structural equation of interest. It can be shown
that this estimator is obtained by minimizing

(y � Zd)0X(X 0X)�1X 0(y � Zd)
(y � Zd)0[I �X(X 0X)�1X 0](y � Zd) :
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If T�1=2X 0u has a limiting normal distribution and T�1X 0Z converges in probability
to a matrix having rank q; both estimators are consistent and have the same large-sample
distribution. The LIML estimator seems to have better small-sample properties, particularly
when m� q is large.

6.3 Impulse response functions and structural VARs

See Hamilton, sections 11.4-11.6.
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